
Order Number: 320183-004US

Intel® EP80579 Software for
Security Applications on Intel®
QuickAssist Technology
Programmer’s Guide

August 2009

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
PG August 2009
2 Order Number: 320183-004US

Legal Lines and DisclaimersINFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for
use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics
of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with
this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-
4725, or by visiting Intel’s Web Site.

Any software source code reprinted in this document is furnished under a software license and may only be used or copied in accordance with the terms
of that license.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different
processor families. See http://www.intel.com/products/processor_number for details.

Code Names are only for use by Intel to identify products, platforms, programs, services, etc. (“products”) in development by Intel that have not been
made commercially available to the public, i.e., announced, launched or shipped. They are never to be used as “commercial” names for products. Also,
they are not intended to function as trademarks.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino logo, Core Inside, FlashFile, i960, InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740,
IntelDX2, IntelDX4, IntelSX2, Intel Core, Intel Inside, Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel
NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel XScale, Itanium, Itanium Inside, MCS, MMX, Oplus,
OverDrive, PDCharm, Pentium, Pentium Inside, skoool, Sound Mark, The Journey Inside, VTune, Xeon, and Xeon Inside are trademarks of Intel
Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2009, Intel Corporation. All rights reserved.

http://www.intel.com
http://www.intel.com/products/processor_number

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
August 2009 PG
Order Number: 320183-004US 3

Contents—Security Software

Contents

1.0 Introduction ..7
1.1 What’s New in this Chapter...7
1.2 About this Document ...7
1.3 Where to Find Current Software and Documentation ..7
1.4 Related Information...8

1.4.1 Reference Documents ...8
1.5 Glossary ..8
1.6 Features Supported in this Release .. 10

Part 1: Architectural Overview ..11
2.0 Silicon Overview.. 12

2.1 What’s New in this Chapter... 12
2.2 High Level Overview .. 12

3.0 Software Overview .. 14
3.1 What’s New in this Chapter... 14
3.2 Shared Memory Allocation .. 14
3.3 Logical View ... 15

3.3.1 Acceleration Firmware Layer .. 15
3.3.2 Acceleration Access Layer and Acceleration APIs... 15
3.3.3 Infrastructure .. 16
3.3.4 Acceleration System Driver (ASD) .. 16
3.3.5 Shim Layers .. 17

3.4 Development View... 17
3.5 Process View .. 18
3.6 Deployment View .. 18

4.0 Intel® QuickAssist Technology Cryptographic API Architecture Overview................ 20
4.1 What’s New in this Chapter .. 20
4.2 Feature List .. 20

4.2.1 Symmetric Operations .. 20
4.2.2 Random Number .. 22
4.2.3 Public Key Operations ... 22

4.3 Intel® QuickAssist Technology Cryptographic API Documentation............................. 22
4.4 Lookaside Security Algorithms High Level Overview ... 23

4.4.1 Lookaside Symmetric Overview.. 23
4.4.2 Key Generation .. 26
4.4.3 Lookaside PKE Overview.. 26
4.4.4 Lookaside Random Overview ... 28

5.0 QAT Access Layer Architecture Overview... 29
5.1 What’s New in this Chapter... 29
5.2 Overview ... 29

6.0 Debug Component Architecture Overview.. 30
6.1 What’s New in this Chapter... 30
6.2 Overview ... 30
6.3 Version Information... 30
6.4 Liveness Detection .. 30
6.5 Data Structure Dump... 31

7.0 ASD Module Architecture Overview.. 32
7.1 What’s New in this Chapter... 32

Security Software—Contents

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
PG August 2009
4 Order Number: 320183-004US

7.2 Overview..32
7.3 Functional Description ..32

7.3.1 Configuration ...32
7.4 Boot Time Configuration Instructions..34

8.0 ASD Hardware Services..35
8.1 What’s New in this Chapter ...35
8.2 Overview..35
8.3 Functional Description ..35

8.3.1 Interrupt Management Services ..35
8.3.2 NCDRAM/CDRAM Interface...38

Part 2: Using the API ..41
9.0 Introduction to Use Cases ..42

9.1 What’s New in this Chapter ...42
9.2 Use Cases...42

9.2.1 Lookaside Acceleration Model ...42

10.0 Programming Model...43
10.1 What’s New in this Chapter ...43
10.2 Overview..43
10.3 Intel® QuickAssist Technology API Conventions ...43

10.3.1 Memory Allocation and Ownership...43
10.3.2 Data Buffer Models ...44
10.3.3 Synchronous and Asynchronous Support..44
10.3.4 Pre-Registration ...45

10.4 Other API Conventions ...45
10.4.1 Asynchronous API and Function Completion Callbacks..................................45
10.4.2 Memory Allocation and Ownership...46
10.4.3 Callback Data Structures ...46
10.4.4 Return Codes ...47

11.0 Debugging Applications ...48
11.1 What’s New in this Chapter ...48
11.2 Management Interface Layer (MIL) Introduction...48

11.2.1 Loading the MIL Application ...49
11.3 MIL User Command Details ...49

11.3.1 help ..50
11.3.2 DebugEnable..50
11.3.3 DebugDisable...51
11.3.4 VersionDumpAll ..52
11.3.5 setHC <timeout>..53
11.3.6 SystemHealthCheck ..54
11.3.7 DataDump ...55
11.3.8 SetFileName <filename> ...56

11.4 APIs...56

12.0 Using the Intel® QuickAssist Technology Cryptographic API58
12.1 What’s New in this Chapter ...58
12.2 Intel® QuickAssist Technology Cryptographic API ...58

12.2.1 Modes of Operation...60
12.2.2 Interrupt Operation...60
12.2.3 Engine and Priority Support..61
12.2.4 Statistics ...61

12.3 Symmetric Cryptographic API Data Flow ...61

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
August 2009 PG
Order Number: 320183-004US 5

Contents—Security Software

12.4 Data Format ... 64
12.4.1 Flat Buffers ... 64
12.4.2 Buffer List ... 65

12.5 Memory Management .. 65
12.6 Endianness and Alignment.. 66
12.7 High-Level API Flow... 66

12.7.1 Cryptographic API Initialization and Shutdown.. 66
12.8 Intel® QuickAssist Technology Cryptographic API Data Flow.................................... 67

12.8.1 Completion of an Operation ... 67
12.8.2 Symmetric Operations .. 67
12.8.3 Asymmetric Operations ... 71

12.9 Using a Cryptographic Framework ... 74
12.10 Accelerating Cryptographic Protocols.. 74
12.11 Error Handling .. 75

A NPF Copyright Notice... 76

Figures
1 Intel® EP80579 Integrated Processor with Intel® QuickAssist Technology Block Diagram... 13
2 Software for Intel® EP80579 Integrated Processor product line 15
3 Acceleration Access Layer and Acceleration APIs .. 16
4 Electronic Codebook (ECB) Mode.. 23
5 Cipher-Block Chaining (CBC) Mode ... 24
6 Counter Mode.. 24
7 ISR Sequence Diagram ... 37
8 Intel® EP80579 Integrated Processor with Intel® QuickAssist Technology Block Diagram... 39
9 Intel® EP80579 Integrated Processor Address Space .. 40
10 Management Interface Layer Architecture Decomposition .. 48
11 Sequence Diagram for DebugEnable Command .. 50
12 Sequence Diagram for DebugDisable Command ... 51
13 Sequence Diagram for VersionDumpAll Command .. 52
14 Sequence Diagram for setHC Command .. 53
15 Sequence Diagram for SystemHealthCheck Command... 54
16 Sequence Diagram for DataDump Command ... 55
17 Sequence Diagram for SetFileName Command... 56
18 Symmetric Asynchronous Intel® QuickAssist Technology Cryptographic API Data Flow 62
19 Symmetric Synchronous Intel® QuickAssist Technology Cryptographic API Data Flow........ 63
20 Flat Buffer Diagram.. 65
21 Buffer List Diagram .. 65
22 NPF Copyright Notice.. 76

Tables
1 Related Documents and Sample Code ...8
2 Reference Documents...8
3 Terms and Definitions...8
4 Development View ... 18
5 Deployment View... 19
6 Cryptographic System Resource Variables ... 33
7 Resource Variables... 33
8 QAT-AL ISR Primitives .. 36
9 Memory Region Definitions .. 38
10 ACPI Shared RAM Methods .. 40
11 Error Values for Other APIs ... 47

Security Software—Revision History

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
PG August 2009
6 Order Number: 320183-004US

12 Debug APIs ...56
13 Cryptographic Common Interface Summary (icp_lac_cfg.h) ...58
14 Cryptographic Instance Management Summary (cpa_cy_im.h)58
15 Cryptographic Symmetric Interface Summary (cpa_cy_sym.h)59
16 Cryptographic Symmetric Key Interface Summary (cpa_cy_key.h)..................................59
17 Cryptographic Asymmetric Rand Interface Summary (cpa_cy_rand.h)59
18 Cryptographic Asymmetric RSA Interface Summary (cpa_cy_rsa.h).................................59
19 Cryptographic Asymmetric Diffie-Hellman Interface Summary (cpa_cy_dh.h)59
21 Cryptographic Asymmetric Prime Interface Summary (cpa_cy_prime.h)...........................60
20 Cryptographic Asymmetric Large Numbers Interface Summary (cpa_cy_ln.h)60
22 Cryptographic API Status Values...75

Revision History

§ §

Date Revision Description

August 2009 004 Added Note explaining cryptographic framework “shim” support (identified in “What’s New”
sections of chapters and with change bars).

May 2009 003

The following sections were updated and noted with change bars:
• OCF shim is now supported on FreeBSD; modified Notes in Section 1.6, Section 3.3.5,

Section 12.9, and Section 12.10.
• Modified Table 7, “Resource Variables” on page 33.
• In Chapter 11.0, “Debugging Applications,” added Section 11.2.1 and Section 11.3.8.
• Deleted Resource Manager text from Section 3.6 and Section 8.3.1 (no change bars).
• Removed Software Error Notification section in Chapter 6 (no change bars).
• Other updates noted in “What’s New” sections of chapters and with change bars.

November 2008 002
The following sections were updated and noted with change bars:
• Section 12.8.2.6: added details on key generation
• Other updates noted in “What’s New” sections of chapters and with change bars.

August 2008 001 Initial release of this document.

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
August 2009 PG
Order Number: 320183-004US 7

Introduction—Security Software

1.0 Introduction

1.1 What’s New in this Chapter

Section 1.6: New Note explaining cryptographic framework “shim” support.

1.2 About this Document

The API Reference Manuals listed in Table 1 describe how the user can interface to the
Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology.
This document provides more information on how the APIs can be effectively used,
including an overview of the silicon, an overview of the software architecture, and
information on using the API to build an accelerated security appliance.

The following chapters are included in this document:

• Chapter 1.0, “Introduction” this chapter

• Part 1: “Architectural Overview”

— Chapter 2.0, “Silicon Overview”

— Chapter 3.0, “Software Overview”

— Chapter 4.0, “Intel® QuickAssist Technology Cryptographic API Architecture
Overview”

— Chapter 5.0, “QAT Access Layer Architecture Overview”

— Chapter 6.0, “Debug Component Architecture Overview”

— Chapter 7.0, “ASD Module Architecture Overview”

— Chapter 8.0, “ASD Hardware Services”

• Part 2: “Using the API”

— Chapter 9.0, “Introduction to Use Cases”

— Chapter 10.0, “Programming Model”

— Chapter 11.0, “Debugging Applications”

— Chapter 12.0, “Using the Intel® QuickAssist Technology Cryptographic API”

— Appendix A, “NPF Copyright Notice”

1.3 Where to Find Current Software and Documentation

The software release and associated collateral can be found on the Hardware Design
resource center.

1. In a web browser, go to http://www.intel.com/go/soc

2. For Software and pre-boot firmware: Click on “Tools & Software” tab.

3. For Documentation: Click on “Technical Documents” tab.

http://www.intel.com/go/soc

Security Software—Introduction

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
PG August 2009
8 Order Number: 320183-004US

1.4 Related Information

Note: For convenience, in this document [GET_STARTED_GD] refers to either the Linux or
FreeBSD guide. Refer to the appropriate guide for your operating system.

1.4.1 Reference Documents

The following documents provide more information on certain topics beyond the scope
of this guide.

1.5 Glossary

Table 3 lists the terms and acronyms used in this document.

Table 1. Related Documents and Sample Code

Ref Document Name Document
Number

[CRYPTO_API] Intel® EP80579 Software for Security Applications on Intel®
QuickAssist Technology Cryptographic API Reference Manual 320184

[GET_STARTED_GD]

Intel® EP80579 Software for Security Applications on Intel®
QuickAssist Technology for Linux* Getting Started Guide
Intel® EP80579 Software for Security Applications on Intel®
QuickAssist Technology for FreeBSD* Getting Started Guide

320182

320703

[DEBUG_API] Intel® EP80579 Software on Intel® QuickAssist Technology Debug
Services API Reference Manual 320185

[SAMPLE_CODE]
After installation, sample code may be found here:
Acceleration/library/icp_crypto/look_aside_crypto/sample_code/

N/A

[OCF_CODE]
After installation, OCF Shim sample code may be found here:
Acceleration/shims/OCF_Shim/src/

N/A

Table 2. Reference Documents

Reference Document Information

[4+1] "The 4+1 View Model of Architecture" by Philippe B. Kruchten, Rational Software, Nov 1995,
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=469759

[NPF API]
“NPF Software API Conventions Implementation Agreement”, Revision 2.0,
http://www.oiforum.com/public/documents/APIConventions2_IA.pdf
Note: See Appendix A, “NPF Copyright Notice” for more information.

[IA-32]
Intel® 64 and IA-32 Architectures Software Developer's Manuals
http://www.intel.com/products/processor/manuals/

Table 3. Terms and Definitions (Sheet 1 of 2)

Term Description

(A)RC4 Alleged RC4. A stream cipher, used in popular protocols such as SSL

ACPI Advanced Configuration and Power Interface

AES Advanced Encryption Standard

AIOC Acceleration and I/O Complex

APM Advanced Power Management

ASD Acceleration System Driver

ASU Acceleration Services Unit

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=469759
http://www.oiforum.com/public/documents/APIConventions2_IA.pdf
http://www.intel.com/products/processor/manuals/

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
August 2009 PG
Order Number: 320183-004US 9

Introduction—Security Software

CBC Cipher Block Chaining mode. This is a mode of operation of a block cipher that
combines the ciphertext of one block with the plaintext of the next block.

CDRAM Coherent DRAM

CTR Counter mode. This is a mode of operation of a block cipher that generates a
keystream block by encrypting successive values of a counter.

DES Data Encryption Standard

DRAM Dynamic Random Access Memory

DSA Digital Signature Algorithm

DSS Digital Signature Standard

ECB Electronic Code Book

GbE Gigabit Ethernet

GCM Galois Counter Mode

HMAC Hashed Message Authenticate Code

IICH Integrated I/O Controller Hub

IMCH Integrated Memory Controller Hub

IPSec Internet Protocol Security

IV Initialization Vector

LA Lookaside, also called Cryptographic API

LAC Lookaside Crypto, also called Cryptographic API

MAC Media Access Control

MD5 Message Digest 5

MGF Mask Generation Function

NCDRAM Non-Coherent DRAM

NVRAM Non-Volatile Random Access memory

OCF OpenBSD Cryptographic Framework

OIF Optical Internetworking Forum, standards body for networking specifications

OSDRAM Operating System DRAM

PKCS Public Key Cryptography Standards

PKE Public Key Encryption

PKI Public Key Infrastructure

PRGA Pseudo-Random Generation Algorithm

QAT-AL Intel® QuickAssist Technology Access Layer

RC4 See (A)RC4

RFC Request for Comments

RSA A public key encryption algorithm created by Rivest, Shamir, and Adleman

SHA Secure Hash Algorithm

SOC System on a chip

SSL Secure Sockets Layer

SSU Security Services Unit

TDM Time-Division Multiplexing

TLS Transport Layer Security (SSL successor)

Table 3. Terms and Definitions (Sheet 2 of 2)

Term Description

Security Software—Introduction

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
PG August 2009
10 Order Number: 320183-004US

1.6 Features Supported in this Release

The features provided by this software in this release are as follows:

• Acceleration of cryptographic operations using the “lookaside” model, via the
Cryptographic API. For more details, see Chapter 4.0, “Intel® QuickAssist
Technology Cryptographic API Architecture Overview.”

— Symmetric cryptographic operations supported include ciphers [AES, 3DES,
DES, (A)RC4] and message digest/hash for authentication (MD5, SHA-1, SHA-2
as well as HMAC).

— Asymmetric (public key) cryptographic operations such as modular
exponentiation to support RSA, Diffie-Hellman, DSA.

— “True” random number generation.
This allows for cryptographic protocols such as IPSec and SSL to offload compute-
intensive cryptographic operations, freeing up the IA core to execute higher-value
application code.

• Software is provided which adapts between the Cryptographic API and that
expected by the industry-standard OpenBSD Cryptographic Framework (OCF). This
OCF “shim” allows applications — such as Openswan* and OpenSSL* —which are
written to use the OCF APIs, to seamlessly take advantage of the cryptographic
acceleration engine.

Note: The EP80579 security software release package version 1.0.3 does not
support OpenBSD/FreeBSD Cryptographic Framework (OCF), OCF-Linux, or
any open source projects such as Openswan*, OpenSSL*, or Racoon*. If
your application requires OCF, you must use security software package
version 1.0.2 which includes shim software to enable OCF support.

§ §

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
August 2009 PG
Order Number: 320183-004US 11

Architectural Overview—Security Software

Part 1: Architectural Overview
This section contains the following chapters:

• Chapter 2.0, “Silicon Overview”

• Chapter 3.0, “Software Overview”

• Chapter 4.0, “Intel® QuickAssist Technology Cryptographic API Architecture Overview”

• Chapter 5.0, “QAT Access Layer Architecture Overview”

• Chapter 6.0, “Debug Component Architecture Overview”

• Chapter 7.0, “ASD Module Architecture Overview”

• Chapter 8.0, “ASD Hardware Services”

§ §

Security Software—Silicon Overview

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
PG August 2009
12 Order Number: 320183-004US

2.0 Silicon Overview

2.1 What’s New in this Chapter

No updates in this release.

2.2 High Level Overview

The Intel® EP80579 Integrated Processor is a System On a Chip (SOC), integrating the
Intel® Architecture core processor, the Integrated Memory Controller Hub (IMCH) and
the Integrated I/O Controller Hub (IICH) all on the same die. In addition, it has
integrated Intel® QuickAssist Technology, which provides acceleration of cryptographic
and packet processing. It also includes three gigabit Ethernet MACs, TDM interfaces,
and PCI Express. See Figure 1 for details.

• As an SOC, the EP80579 integrates the processor and chipset as follows:

— The IA-32 core is based on the Intel® Pentium® M processor, and runs at 600-
1200MHz, with a 256 Kilobyte 2-way level 2 (L2) cache.

— The IMCH provides the main path to memory for the IA core and all peripherals
that perform coherent I/O (for example, the PCI express, the IICH, as well as
transactions from the Acceleration and I/O Complex to coherent memory).

— The IICH provides a set of PC platform-compatible I/O devices that include two
SATA 1.0/2.0, two USB 1.1/2.0 host controller supporting two USB ports, and
two serial 16550 compatible UART interfaces.

• The Intel® QuickAssist Technology components, housed in the Acceleration and I/O
Complex (AIOC), are as follows:

— The Security Services Unit (SSU) provides acceleration of cryptographic
processing for most common symmetric cryptography (cipher algorithms such
as AES, 3DES, DES, (A)RC4, and messages digest/hash functions such as MD5,
SHA-1, SHA-2, HMAC, etc.); asymmetric cryptography (modular
exponentiation to support public key encryption such as RSA, Diffie-Hellman,
DSA); and true random number generation.

— The Acceleration Services Unit (ASU) includes packet processing acceleration
engines.

• Other components within the AIOC include:

— Three Gigabit Ethernet (GbE) media access controllers (MACs).

— Three High Speed Serial (HSS) interfaces that support up to 12 T1/E1 TDM
interfaces. These interfaces are driven by a Programmable I/O Unit (PIU). The
PIU is not part of the ASU. In Figure 1 on page 13, the PIU is shown as the TDM
Interface block.

— Although not shown explicitly in Figure 1, the AIOC also contains logic to allow
agents to access on-chip SRAM and external DRAM. Based on registers which
can be configured in the BIOS, this logic routes requests to external DRAM
either directly to the memory controller (to access non-coherent DRAM, or
NCDRAM); or through the IMCH for coherency with the IA processor’s L2 cache
(to access Coherent DRAM, or CDRAM). There is also a ring controller, which

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
August 2009 PG
Order Number: 320183-004US 13

Silicon Overview—Security Software

provides 64 rings (circular buffers) that can be used for message passing
between software running on the IA core and firmware running on the ASU.
These features are described in detail in later sections of this document.

§ §

Figure 1. Intel® EP80579 Integrated Processor with Intel® QuickAssist Technology
Block Diagram

Acceleration and I/O Complex ‡ Enabling software required.

IMCH

PCI
Express
Interface

(x1)

(Gen1,
1x8, 2x4 or

2x1 root
complex)

IA Complex

IA
-3

2
co

re

L2
 C

ac
he

(2
56

 K
B

)

IICH

APIC, DMA, Timers, Watch Dog
Timer, RTC, HPET (x3)

Memory Controller HubFSB

EDMA

Memory Controller

(DDR-2 400/533/667/800,
64b with ECC)

TDM
Interface‡

(12 E1/T1)

Local
Expansion

Bus
(16b @
80 MHz)

MDIO (x1)
CAN (x2)
SSP (x1)

IEEE-1588

Acceleration
Services Unit‡

Security
Services Unit‡

(3DES, AES, (A)RC4,
MD5, SHA-x, PKE,

TRNG)

256 KB
ASU SRAM

GigE
MAC

#2

GigE
MAC

#0

GigE
MAC

#1

Transparent
PCI-to-PCI Bridge

UART (x2)
GPIO (x36)
SMBus (x2)

SATA 2.0
(x2)

USB 2.0
(x2)

SPI
LPC1.1

Security Software—Software Overview

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
PG August 2009
14 Order Number: 320183-004US

3.0 Software Overview

This chapter presents the high-level architecture of the Software for Intel® EP80579
Integrated Processor product line, using concepts from the "4+1 view model" of
software architecture, as described in [4+1]. These views are interpreted as follows:

• Section 3.3, “Logical View” on page 15 describes the collection of software
components in terms of their key responsibilities, interfaces, and dependencies.

• Section 3.4, “Development View” on page 17 describes the static organization of
the software in its development environment (that is, folders and files).

• Section 3.5, “Process View” on page 18 captures concurrency and synchronization
aspects of the architecture. This includes the mapping of software onto hardware,
reflecting the distributed aspect of the architecture; this is sometimes considered
part of the Physical or Deployment View.

• Section 3.6, “Deployment View” on page 18 describes the mapping of the software
into kernel modules.

• The architecture is illustrated with a few selected use cases or scenarios which
become a fifth view, the Scenario View. In this document, the Scenario View is
described in Part 2, “Using the API” on page 41.

Before looking at these views, however, other concepts relevant to the architecture are
introduced:

• Section 3.2, “Shared Memory Allocation” on page 14 describes the concepts of
coherent and non-coherent DRAM.

3.1 What’s New in this Chapter

• Section 3.3.5: New Note explaining cryptographic framework “shim” support.

3.2 Shared Memory Allocation

Two regions of memory exist outside of the normal operating system DRAM, to
facilitate communications between the IA core and the EP80579 with QuickAssist
hardware. These are referred to as the coherent and non-coherent shared memory
regions.

These shared memory regions will be allocated from the available system memory,
starting at the address specified by the Top Of Low Memory (TOLM) register of the
Memory Controller Hub (MCH) downwards. The pre-boot firmware (BIOS) informs the
operating system of the location of the regions, and also configures the hardware to
properly decode the non-coherent memory space by writing the MENCBASE and
MENCLIMIT registers.

The base addresses for each of these regions will be determined by the firmware based
on available memory. Two EFI NVRAM (non-volatile RAM) variables are available for the
user to request a specific amount of space for each of these shared memory regions.
The firmware will make a best effort to accommodate the user’s request, but in the

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
August 2009 PG
Order Number: 320183-004US 15

Software Overview—Security Software

event this is not possible, the firmware will determine the sizes of these regions and set
them accordingly. See Chapter 8.0, “ASD Hardware Services” for details on how this is
configured.

3.3 Logical View

At the highest level, the software components fall into the following “layers”, as
illustrated in Figure 2.

In this document, and for this release, only those layers highlighted in bold are
described in more detail.

3.3.1 Acceleration Firmware Layer

This layer of the architecture is for firmware which runs on the ASU.

The only firmware running at this layer in this software release is the firmware driver
for the SSU, which runs on the ASU. This firmware is provided in binary format.

3.3.2 Acceleration Access Layer and Acceleration APIs

This layer of software runs on the IA core. It implements the configuration and control
of the Acceleration Firmware layer running on the ASU, and provides an Application
Programming Interface (API) for the rest of the system to interface with the
acceleration firmware.

Figure 3 shows the different components at this layer. The APIs are also shown to
highlight the mapping between APIs and the corresponding acceleration libraries.

Figure 2. Software for Intel® EP80579 Integrated Processor product line

Standard OS
Drivers and

PreBoot
Firmware

Platform hardware

OS Stack or Ecosystem Middleware Layer

Shim Layers

Hardware
Access

Libraries

Hardware
Access APIs

Acceleration APIs

Acceleration Firmware Layer

Acceleration Access Layer

Infrastructure

Acceleration Subsystem

Custom Drivers

Customer Application

Acceleration
System Driver

Security Software—Software Overview

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
PG August 2009
16 Order Number: 320183-004US

The software components at this layer in the current release are as follows:

• Lookaside Crypto Access Layer: This component implements the Cryptographic API
(shown as LAC API in Figure 3). It manages the exchange of data and messages
between the Cryptographic API and the SSU driver firmware running on the ASU.
See Chapter 4.0, “Intel® QuickAssist Technology Cryptographic API Architecture
Overview” for more details.

• QAT Access Layer: This component implements the configuration and control of the
SSU driver firmware running on the ASU. It also provides an interface for the
Lookaside Crypto Access Layer to communicate with the SSU driver firmware. See
Chapter 5.0, “QAT Access Layer Architecture Overview” for more details.

• Debug Infrastructure: This component provides access to data which can be used
to help debug an application running on EP80579 with QuickAssist. It allows
version information to be queried, “liveness” of components to be polled, data
dumps to be generated which can be analyzed offline, and other debug-related
features. See Chapter 6.0, “Debug Component Architecture Overview” for more
details.

Note: The Data Dump feature is not supported in the current software release.

Most of the layers above also provide APIs. These are described in more detail in the
chapters which comprise Part 2: “Using the API” on page 41.

3.3.3 Infrastructure

This layer consists of the following components:

• The Hardware Services Layer (HSL) component manages the low-level hardware
blocks required for communication with the ASU. This also provides an interface for
exchanging messages with the ASU via rings.

• The Operating System Abstraction Layer (OSAL) component provides OS-specific
services. It is used by many of the components to remove their dependency on a
particular OS and allow for easier porting to new OSes.

3.3.4 Acceleration System Driver (ASD)

The ASD is a system device driver which is responsible for loading firmware and
configuring all the components that comprise the EP80579 security software. It
initializes the Cryptographic API Library, providing it with all necessary information
about the enumeration of the Acceleration Services Unit and any Access library specific

Figure 3. Acceleration Access Layer and Acceleration APIs

In fra stru c tu re

L o o k a s id e
C ry p to A c c e ss

L a y e r

C ry p to g ra p h ic
(L A C) A P I

D
eb

ug

In
fr

as
tr

uc
tu

re

D C C
A P I

Q A T - A L

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
August 2009 PG
Order Number: 320183-004US 17

Software Overview—Security Software

configuration parameters for example number of sessions to be supported, buffer pool
sizes, and so on. See Chapter 7.0, “ASD Module Architecture Overview” for more
details.

3.3.5 Shim Layers

Note: The EP80579 security software release package version 1.0.3 does not support
OpenBSD/FreeBSD Cryptographic Framework (OCF), OCF-Linux, or any open source
projects such as Openswan*, OpenSSL*, or Racoon*. If your application requires OCF,
you must use security software package version 1.0.2 which includes shim software to
enable OCF support.

This layer is intended for components which adapt, or “shim”, between the API provided
by EP80579 security software’s Acceleration API and that expected by industry-
standard frameworks.

In this release, the only component in this layer is the OCF shim, which allows the
lookaside crypto acceleration engine to be plugged in underneath the OpenBSD*/
FreeBSD* Cryptographic Framework (OCF). OCF is a service virtualization layer that
facilitates asynchronous access to cryptographic hardware accelerators. OCF-Linux is a
port of this framework to Linux. It enables cryptographic acceleration in the
Openswan* and OpenSSL* software suites.

A driver has been created which enables the Cryptographic API features to be accessed
via OCF. All operations supported by OCF today are accelerated. Specifically, the
following operations provided by OCF are accelerated by the OCF shim:

• Symmetric/Secret Key Crypto

— Ciphers/Modes: NULL_CBC, DES_CBC, 3DES_CBC, AES_CBC, ARC4

— Hash/Message Digest Functions: MD5, MD5_HMAC, SHA1, SHA1_HMAC,
SHA2_256, SHA2_256_HMAC, SHA2_384, SHA2_384_HMAC, SHA2_512,
SHA2_512_HMAC

— Chained Algorithms

• Asymmetric/Public Key Crypto

— Diffie-Hellman: DH_COMPUTE_KEY

— RSA: MOD_EXP, MOD_EXP_CRT

— DSA: DSA_SIGN, DSA_VERIFY

• Random Number Generation

See the [GET_STARTED_GD] for your operating system for detailed information.

Further information on OCF-Linux can be found here: http://ocf-linux.sourceforge.net

3.4 Development View

Table 4 describes the mapping between the software components described in
Section 3.3, “Logical View” on page 15, and the files and directories (folders) in which
they can be found.

http://ocf-linux.sourceforge.net

Security Software—Software Overview

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
PG August 2009
18 Order Number: 320183-004US

3.5 Process View

This section describes the context in which the EP80579 security software code is
executed, which is important in terms of understanding concurrency, or where locking
may be required, for example.

Code which implements the Acceleration APIs is library code, and is executed in the
context of whatever thread or interrupt context from which it is called. All of the
EP80579 security software APIs document the context in which they can be called,
specifically whether they may sleep and therefore are suitable for calling in a context
which may not sleep, such as ISRs or certain types of "bottom halves" including softirq
and tasklet. They also document whether they are thread-safe. Table 1, “Related
Documents and Sample Code” on page 8 lists the API documentation supported in this
release.

The remainder of EP80579 security software code runs in a well-defined context,
whether it is process context or some form of interrupt context as described below.

• Interrupt handlers are registered for all interrupts from devices managed by
EP80579 security software, specifically the GbE MACs, and the ring controller on
the ASU. This code runs in the ISR (interrupt top half) context.

• Many of the Acceleration APIs support one or both of asynchronous and
synchronous modes.

— In asynchronous mode: when the request has been carried out on the SSU, a
“function completion callback” is typically invoked in a non-sleeping bottom half
context (specifically, a tasklet, on Linux). For more on this topic, see
Section 10.0, “Programming Model” on page 43.

— In synchronous mode: when the request has been sent to the SSU, the calling
thread is blocked, pending on a wait queue. When the response is received
from the SSU, the calling thread is de-queued, and thereby unbocked.

3.6 Deployment View

Table 5 describes the mapping between the software components described in
Section 3.3, “Logical View” on page 15, and the kernel modules that are created by the
build system.

Table 4. Development View

Software Component Directory

OCF Shim Acceleration/shims/OCF_Shim

Acceleration System Driver Acceleration/drivers/icp_asd

Lookaside Crypto Access Layer Acceleration/library/icp_crypto/look_aside_crypto

QAT Access Layer Acceleration/library/icp_crypto/QATAL

Debug Infrastructure Acceleration/library/icp_debug/DCC

Management Interface Module Acceleration/library/icp_debug/MIL

Hardware Abstraction Layer
(part of Hardware Services Layer) Acceleration/library/icp_services/RuntimeTargetLibrary

Operating System Abstraction Layer Acceleration/library/icp_utils/OSAL

Firmware Driver for SSU Acceleration/firmware

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
August 2009 PG
Order Number: 320183-004US 19

Software Overview—Security Software

§ §

Table 5. Deployment View

Kernel Module Component

icp_asd.ko Acceleration System Driver

icp_crypto.ko
Lookaside Crypto Access Layer
QAT Access Layer

icp_debug.ko Debug Infrastructure

icp_debugmgmt.ko

Management Interface Module
Note: This is an optional kernel module, needed only if you are using the

debugmgr command line utility described in Chapter 11.0,
“Debugging Applications.”

icp_hal.ko Hardware Abstraction Layer

icp_ocf.ko OCF Shim

Security Software—Intel® QuickAssist Technology Cryptographic API Architecture Overview

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
PG August 2009
20 Order Number: 320183-004US

4.0 Intel® QuickAssist Technology Cryptographic API
Architecture Overview

4.1 What’s New in this Chapter

No updates in this release.

4.2 Feature List

The Intel® QuickAssist Technology Cryptographic API comprises two broad feature
areas in its API, they are the symmetric operations API and the public key cryptography
API.

4.2.1 Symmetric Operations

4.2.1.1 Cipher

EP80579 security software supports the following Cipher algorithms:

• AES (128-bit/192-bit/256-bit key size) in ECB, CBC and CTR modes. Block size for
data is 16 byte blocks.

• 3DES (192-bit key size) in ECB and CBC and CTR mode. Block size for data is
8 bytes.

• DES (64-bit key size) in ECB and CBC mode. Block size for data is 8 bytes.

• ARC4 (stream cipher)

• NULL cipher with a minimum block size of 8 bytes

4.2.1.2 Hash/Authentication

EP80579 security software supports the following Hash/Authentication algorithms:

• Secure Hash Algorithm SHA-1, SHA-224/256/384/512.

• Authentication algorithms for Secure Hash supported HMAC-SHA-1, HMAC-SHA-
224/256/384/512

• Message Digest 5 (MD5) and HMAC-MD5

• Advanced Encryption Standard (AES) using 96-bit key in AES-XCBC mode to
produce AES-XCBC-MAC-96.

4.2.1.3 Partial Packets for Cipher and Hash/Authentication Commands

A partial packet is defined as a portion of a full packet. The caller issues a separate
request for each portion (partial packet) of the full packet. The size of data sent must
be a multiple of the underlying algorithm block size for cipher and hash requests except
for the final hash partial packet in which padding will be applied if it is not a block size.
The final result following completion of all the portions is equivalent to the case where

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
August 2009 PG
Order Number: 320183-004US 21

Intel® QuickAssist Technology Cryptographic API Architecture Overview—Security Software

the operation is performed over the full packet in a single request. Partial-packet
support is provided for Lookaside Cipher and Hash/Authentication commands only.
Partial-packet support is not provided for any other commands.

The authentication result is not available until after the “final” operation has completed.
The user provided callback will be called in all the cases.

From a user’s perspective, partial packets allow the client to send data to be processed
when they receive it instead of buffering up an entire message. For example, consider
the scenario where a digest needs to be created across gigabytes of data which is being
accessed over a network interface. Rather than copying the entire data set to the
platform, then performing a hash operation across all of the data, the client application
could optimize this process by transferring blocks which are optimal for the network
interface, then sending these chunks to the Lookaside security service for processing as
they are received. This results in higher performance as the acceleration is being
utilized while the transfers are being processed.

4.2.1.4 Out-Of-Place Operation Support

An Out-of-Place operation is when the result of a symmetric operation is written to the
destination buffer. The destination buffer is a different physical location than the source
buffer.

Note: In the current release, Out-of-Place operations are supported for full packets only.

4.2.1.5 Combined Cipher Hash Commands (Algorithm-Chaining)

Chained commands perform a cipher and a hash/authentication operation on the same
input data. These commands are provided to allow more-optimal overall performance
by minimizing the number of memory reads/writes for applications that require both
cipher and hash/authentication operations on the same data. Only standard Cipher and
Standard Hash/Authentication can be chained.

The algorithms mentioned in the Cipher and Hash/Authentication sections can be
placed in any combination of one standard cipher and one standard hash / authenticate
command. Combined Cipher and Hash Commands do not support partial packets.

When performing an authentication/hash prior to a cipher operation using the
combined Cipher-Hash feature, the resultant MAC/digest produced by the
authentication/hash cannot be included in the same cipher operation. The result of the
authentication/hash operation will not be available for the cipher portion of the
operation. This makes this feature unsuitable for SSL type authenticate-then-encrypt
operations, where the MAC is included in the encryption.

4.2.1.6 Authenticated-Encryption Commands

Authenticated-Encryption commands perform chained cipher-and-authenticate
operations. As in the case of other chained operations, these commands are provided
to allow more-optimal overall performance by minimizing the number of memory
reads/writes for applications that require both cipher and authentication operations on
the same data.

The following Authenticated-Encryption algorithms are supported:

• AES algorithm in Galois/Counter mode (GCM)

• AES algorithm in Counter with CBC-MAC mode (CCM)

No partial packet support is provided for authentication encryption commands.

Security Software—Intel® QuickAssist Technology Cryptographic API Architecture Overview

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
PG August 2009
22 Order Number: 320183-004US

4.2.1.7 Key Generation

EP80579 security software supports the following Key Generation operations:

• SSL/TLS Key Generation

• MGF Mask Generation

4.2.2 Random Number

EP80579 security software supports the following Random Number operations:

• Random Data Generation

• Random Data Generator Seed (performed automatically by the hardware)

4.2.3 Public Key Operations

4.2.3.1 Diffie-Hellman

EP80579 security software supports the following Diffie-Hellman operations:

• Public/Private Key Generation (for Diffie-Hellman phase 1)

• Shared Secret Key Generation (for Diffie-Hellman phase 2)

4.2.3.2 RSA

EP80579 security software supports the following RSA operations:

• RSA Key Generation

• RSA Encryption/Decryption

• RSA Signature Generation/Verification

4.2.3.3 DSA

EP80579 security software supports the following DSA operations:

• DSA P, G and Y parameter generation.

• DSA Signature Generation/Verification

4.2.3.4 Prime Number

EP80579 security software supports the following prime number operations:

• Prime Number Tests (using GCD, Miller-Rabin, Lucas and Fermat)

4.2.3.5 Large Number

EP80579 security software supports the following large number operations:

• Modular Exponentiation

• Modular Inversion

4.3 Intel® QuickAssist Technology Cryptographic API
Documentation

Refer to [CRYPTO_API] for more information about the Intel® QuickAssist Technology
Cryptographic API.

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
August 2009 PG
Order Number: 320183-004US 23

Intel® QuickAssist Technology Cryptographic API Architecture Overview—Security Software

4.4 Lookaside Security Algorithms High Level Overview

The following sections provide a high level overview of the algorithms supported by the
Cryptographic API library. It details the algorithms and tries to pull out key details of
the computations. For the reader who wants to get further details or specifics, it is
recommended to reference the relevant RFC.

4.4.1 Lookaside Symmetric Overview

A block cipher is a symmetric key cipher that operates on fixed-length groups of bits,
termed blocks, with an unvarying transformation. When encrypting, a block cipher
might take a (for example) 128-bit block of plaintext as input, and output a
corresponding 128-bit block of ciphertext. The exact transformation is controlled using
a second input — the secret key. Decryption is similar; the decryption algorithm takes a
128-bit block of ciphertext together with the secret key, and yields the original 128-bit
block of plaintext.

To encrypt messages longer than the block size (128 bits in the above example), a
mode of operation is used.

The simplest of the encryption modes is the electronic codebook (ECB) mode, in
which the message is split into blocks and each is encrypted separately, as shown in
Figure 4. The disadvantage of this method is that identical plaintext blocks are
encrypted to identical cipher text blocks; it does not hide data patterns. Thus, in some
senses it doesn't provide message confidentiality at all, and is not recommended for
cryptographic protocols.

In cipher-block chaining (CBC) mode, each block of plaintext is XORed with the
previous ciphertext block before being encrypted, as shown in Figure 5. This way, each
ciphertext block is dependent on all plaintext blocks up to that point.

Figure 4. Electronic Codebook (ECB) Mode

Plaintext block [0]
(64/128 bits)

Encryption

Ciphertext block
[0]

(64/128 bits)

Key
(64 bits for DES

128, 192 and
256 bits for

AES)

Plaintext block [1]
(64/128 bits)

Encryption

Ciphertext block
[1]

(64/128 bits)

Key
(64 bits for DES

128, 192 and
256 bits for

AES)

Security Software—Intel® QuickAssist Technology Cryptographic API Architecture Overview

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
PG August 2009
24 Order Number: 320183-004US

Note: Exclusive disjunction (usual symbol xor) is a logical operator that results in true if one
of the operands (not both) is true.

Counter mode turns a block cipher into a stream cipher, as shown in Figure 6. It
generates the next keystream block by encrypting successive values of a "counter".
The counter can be any simple function which produces a sequence which is
guaranteed not to repeat for a long time, although an actual counter is the simplest
and most popular.

Figure 5. Cipher-Block Chaining (CBC) Mode

Plaintext
block [0]

(64/128 bits)

Encryption

Ciphertext
block [0]

(64/128 bits)

Initialization
Vector (IV)

(64/128 bits)

Plaintext
block [1]

(64/128 bits)

Encryption

Ciphertext
block [1]

(64/128 bits)

Plaintext
block [2]

(64/128 bits)

Encryption

Ciphertext
block [2]

(64/128 bits)

XOR XOR XOR

Figure 6. Counter Mode

Encryption

Ciphertext block
[0]

(128 bits)

Plaintext
block [0]
(128 bits)

Key

1

Encryption

Ciphertext block
[1]

(128 bits)

Plaintext
block [1]
(128 bits)

Key

2

Encryption

Ciphertext block
[2]

(128 bits)

Plaintext block
[2]

(128 bits)

Key

XOR XOR XOR

0

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
August 2009 PG
Order Number: 320183-004US 25

Intel® QuickAssist Technology Cryptographic API Architecture Overview—Security Software

Note: A stream cipher operates on individual digits each one at a time.

(A)RC4

(A)RC4 generates a pseudorandom stream of bits (a “keystream”) which, for
encryption, is combined with the plaintext using XOR a decryption is performed the
same way. To generate the keystream, the cipher makes use of a secret internal state
which consists of two parts:

• A permutation of all 256 possible bytes (denoted "S" below)

• Two 8-bit index-pointers (denoted "i" and "j")

The permutation is initialized with a variable length key, typically between 40 and 256
bits, using the key-scheduling algorithm (KSA). Once this has been completed, the
stream of bits is generated using the Pseudo-Random Generation Algorithm (PRGA).

For as many iterations as are needed, the PRGA modifies the state and outputs a byte
of the keystream. In each iteration, the PRGA increments i, adds the value of S pointed
to by i to j, exchanges the values of S[i] and S[j], and then outputs the value of S at
the location S[i] + S[j] (modulo 256). Each value of S is swapped at least once every
256 iterations.

 i := 0

 j := 0

 while GeneratingOutput:

 i := (i + 1) mod 256

 j := (j + S[i]) mod 256

 swap(S[i],S[j])

 output S[(S[i] + S[j]) mod 256]

NULL-ECB

The NULL cipher in ECB mode of operation simply produces the same plaintext as was
passed into the algorithm.

Hashing/MAC/HMAC

A hash operation takes arbitrary binary data as input and produces a fixed-sized binary
string as output called a hash or message digest. A cryptographic message
authentication code (MAC) is a short piece of information used to authenticate a
message. A MAC algorithm accepts as input a secret key and an arbitrary-length
message to be authenticated, and outputs a MAC. The MAC value protects both a
message's integrity as well as its authenticity, by allowing verifiers (who also possess
the secret key) to detect any changes to the message content. MAC functions are
similar to keyed hash functions.

MAC algorithms can be constructed from other cryptographic primitives, such as
cryptographic hash functions (as in the case of HMAC) or from block cipher algorithms
(CBC-MAC and XCBC-MAC).

CCM

By definition, CCM is CTR Encryption and CBC-MAC Authentication. So AES-CCM is AES-
CTR Encryption, AES-CBC-MAC Authentication. The valid key sizes for CTR mode are -
128/192/256 and for Authentication are 128 keys.

Security Software—Intel® QuickAssist Technology Cryptographic API Architecture Overview

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
PG August 2009
26 Order Number: 320183-004US

GCM

“Galois/Counter Mode (GCM) is a block cipher mode of operation that uses universal
hashing over a binary Galois field to provide authenticated encryption.” This is an
excerpt from the GCM specification which can be accessed at: http://www.nist.gov/

4.4.2 Key Generation

The Cryptographic API module provides TLS and SSL key generation operation along
with a Mask Generation Function (MGF).

TLS/SSL Generation: For both algorithms functions are provided for the generation of
the Master-Secret and Key Materials. These are optimized accelerations for use in SSL/
TLS key negotiation and generation applications.

MGF: Takes a seed of specified length and produces a generated mask, which is
pseudorandom, of the specified size.

4.4.3 Lookaside PKE Overview

This section gives a brief overview of Public Key algorithms and standards relevant for
EP80579 security software. The following is a list of Public key algorithms/standards:

• Diffie-Hellman (DH) Key Exchange – PKCS #3 v1.4

• RSA Cryptography Standard – PKCS #1 v2.1 and ANSI X9.31

• Digital Signature Algorithm (DSA) – FIPS-186-2

• GCD, Miller-Rabin, Lucas and Fermat primality testing (ANSI X9.80)

4.4.3.1 Diffie-Hellman Key Exchange

DH is used to create a “shared secret”, from which symmetric key information may be
derived. This Key can be used to encrypt subsequent communications using a
symmetric key cipher.

The protocol has two system parameters p and g. They are both public and may be
used by all the users in a system. Parameter p is a prime number and parameter g
(usually called a generator) is an integer less than p, with the following property: for
every number n between 1 and p-1 inclusive, there is a power k of g such that n = gk
mod p.

The underlying mathematical principle is the identity: (ga mod p)b mod p = (gb mod p)a
mod p. DH cryptographic strength is derived from the fact that logarithms are difficult
to do in a MODP group. A set of standard DH (MODP) groups are defined in RFC-2409
and RFC-3526. Modulus sizes range from 768 to 4096 bits.

There are two modes of Diffie-Hellman:

• Normal Diffie-Hellman: DH parameters are contained within a certificate, signed
by a certificate authority (CA).

• Ephemeral Diffie-Hellman: DH parameters are created “on the fly” by the
negotiating parties. These parameters are then signed using a DSS or RSA
certificate, which is itself signed by a CA.

http://www.nist.gov/

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
August 2009 PG
Order Number: 320183-004US 27

Intel® QuickAssist Technology Cryptographic API Architecture Overview—Security Software

4.4.3.2 RSA Cryptographic Standard

RSA may be used for encryption or signature generation. The Chinese Remainder
Theorem (CRT) can be used as a method of RSA acceleration. CRT describes how to do
exponentiation (or multiplication) modulo a composite modulus n as a series of smaller
multiplications modulo the prime factors of n. Its cryptographic strength is derived
from the fact that it is difficult to factor large composite numbers.

When used for encryption, the message is encapsulated using the PKCS v1.5
(deprecated) or OAEP (Optimal Asymmetric Encryption Padding) encoding schemes.
OAEP is an improvement over the v1.5 (encryption) encoding scheme in that it
provides security against adaptive chosen-ciphertext attacks.

When used for digital signatures, the message is encapsulated using the PKCS v1.5
(deprecated) or PSS (Probabilistic Signature Scheme). Although there are no known
attacks against the PKCS v1.5 (signature) encoding scheme, the PSS encoding is more
robust, as it introduces randomness into the encoded message, so that the same
plaintext message will, in general, produce different encoded messages.

The above schemes (PKCS v1.5, OAEP, DSS, PSS) are supported by the Cryptographic
API through supporting RSA primitive operations. There are no specific APIs to perform
the encapsulation of the encryptions/signatures generated by the RSA primitive
operations.

4.4.3.3 Digital Signature Algorithm

DSA is used for signature generation and verification only. It is a digital signature
rather than a written signature. The DSA provides the capability to generate and verify
signatures. Signature generation makes use of a private key to generate a digital
signature. Signature verification makes use of a public key which corresponds to, but is
not the same as, the private key. Each user possesses a private and public key pair.
Public keys are assumed to be known to the public in general. Private keys are never
shared. Anyone can verify the signature of a user by employing that user's public key.
Signature generation can be performed only by the possessor of the user's private key.

A hash function is used in the signature generation process to obtain a condensed
version of data, called a message digest. The message digest is then input to DSA to
generate the digital signature. The digital signature is sent to the intended verifier
along with the signed data. The verifier of the message and signature verifies the
signature by using the sender's public key. The same hash function must also be used
in the verification process.

The underlying mathematical principle is Fermat’s Little Theorem, which states that gp-
1 mod p = 1 for p prime. Its cryptographic strength is derived from the fact that
logarithms are difficult to do in a MODP group. As with Diffie-Hellman, DSA may be
applied in an ephemeral manner, in which parameters are generated on the fly and
used to create only one digital signature.

4.4.3.4 Prime Number Testing

Lookaside provides an interface to test probabilistically if a number is prime (refer to
ANSI x9.80 specification for details). This is used for testing the primality of random
numbers generated for key material. The following algorithms are supported for prime
number sizes (in bits) 160, 512, 768, 1024, 1536, 2048, 3072 and 4096.

• GCD

• Fermat

• Miller-Rabin

• Lucas

Security Software—Intel® QuickAssist Technology Cryptographic API Architecture Overview

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
PG August 2009
28 Order Number: 320183-004US

Prime number testing can gain a performance improvement through parallelism of the
requests sent through the Cryptographic API. For example, if 30 Miller-Rabin rounds
are required, then issuing two 15 round Miller-Rabin requests would be an optimal
usage of the Cryptographic API.

4.4.3.5 Large Number

Lookaside provides an interface to perform modular exponentiation and modular
inversion functions. These are grouped together under the “Large Number” Category.
These can be used as primitives for other cryptographic protocols. Large number
operations are supported for all sizes up to a maximum of 4096 bits.

• Modular Exponentiation

Modular exponentiation involves taking an integer (the base), raising it to the power of
another integer (the exponent) and then calculating the remainder left when this
number is divided by the modulus. We calculate result = baseexponent mod modulus.
The RSA and Diffie-Hellman operations both use specialized modular exponentiation
which are optimized for those particular cases. For all other cases the “Large Number”
implementation should be used.

• Modular Inversion

Modular inversion involves taking an integer (typically referred to as pA), inverting it
(i.e. calculating 1/pA), and then calculating the remainder left when this number is
divided by the modulus (typically referred to as pB). We calculate result = (1/pA) mod
pB. This mod inv operation is generic and can be used by any application.

4.4.4 Lookaside Random Overview

The EP80579 integrated processor provides a Deterministic Random Bit Generator
(DRBG) capability. Random numbers are used in many aspects of cryptography (for
example as an initial IV for a cipher in CBC mode) and in the generation of prime
numbers. Random number generation in combination with Primality testing can be
used to create key material.

This feature can generate random bits that conform with the ANSI X9.82 part 1
specification.

§ §

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
August 2009 PG
Order Number: 320183-004US 29

QAT Access Layer Architecture Overview—Security Software

5.0 QAT Access Layer Architecture Overview

5.1 What’s New in this Chapter

No updates in this release.

5.2 Overview

The QAT Access Layer (QAT-AL) is responsible for management and configuration of the
SSU and the driver firmware for the SSU running on the ASU. The QAT-AL component is
initiated and started by the Acceleration System Driver (ASD) and stopped and
shutdown afterwards also by the ASD.

After initialization of QAT-AL is executed, startup must be executed, followed by stop
and then shutdown before QAT-AL can be initialized again.

The QAT-AL is responsible for:

1. Setup and test the entropy sample for Random Number Generation.

2. Setup communications structures for communication to and from the ASU
(Acceleration Service Unit).

3. Sending the command messages to start and stop the firmware driver for the SSU
(Security Services Unit).

4. Provide Version information and liveness of the SSU and the firmware driver of the
SSU to the Debug Component.

5. Provide various statistics about the running of the SSU and communication rings.

The QAT-AL provides to other users:

1. A communications interface to communicate with the ASU.

2. A communication interface to allow other components to retest the entropy sample.

§ §

Security Software—Debug Component Architecture Overview

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
PG August 2009
30 Order Number: 320183-004US

6.0 Debug Component Architecture Overview

6.1 What’s New in this Chapter

• No updates in this release.

6.2 Overview

Debugging an application when problems occur can be difficult, especially when
integrating with third-party software. To ease this burden, all of the EP80579 security
software which runs in the Linux kernel is provided as source code, thereby facilitating
debug as part of an application. In addition, the software provides mechanisms to
support debug of the acceleration access layers and firmware modules. These
mechanisms will help the end user in identifying and diagnosing the fault, whether they
are due to defects in the software itself, or in the usage of this by the application.

As part of this debug infrastructure, the following debug features are supported:

• Version Information

• Liveness Detection

• Data Structure Dump (not supported in the current software release)

• Software Error Notification (SEN)

Each of these features is described in more detail below.

6.3 Version Information

To debug an issue, it is important to know the version of the software which is running.
This version information consists of the following:

• Package version information that applies to a specific complete software package

• Individual software component version information for all the software components
that are contained in the software package

The version information will contain the package/component name, the major number,
minor number and patch number of the release.

6.4 Liveness Detection

Liveness detection is a mechanism to allow client applications to determine the runtime
health of the various “threads of execution” that run within the Intel® EP80579
Integrated Processor. These may be threads running within the kernel on the IA core,
or on the ASU. The client can at anytime query the “liveness” of all such threads of
execution. The software will list all the threads of execution in the system, along with
their state (dead or alive).

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
August 2009 PG
Order Number: 320183-004US 31

Debug Component Architecture Overview—Security Software

6.5 Data Structure Dump

Note: The Data Dump feature is not supported in the current software release.

Many of the software components in the Intel® EP80579 Integrated Processor maintain
a certain amount of state information — debug counters, state variables, and so on —
to help understand the current state of that software, and thereby debug or
troubleshoot an application. This data is in addition to statistics maintained as part of
the application (for example, counters required to support Management Information
Bases, or MIBs). Data dump is a mechanism to retrieve these debug data structures.

Data dump provides a simple API with which a customer application can request the
internal data structures and other information associated with the internal software. On
receiving such a request for data dump information, the acceleration software gathers
and provides necessary data to understand the internal state of the software.

On discovering an issue, the end-user should use this facility to dump the log and
forward it to the Intel TME for further analysis of the problem.

§ §

Security Software—ASD Module Architecture Overview

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
PG August 2009
32 Order Number: 320183-004US

7.0 ASD Module Architecture Overview

7.1 What’s New in this Chapter

• No updates in this release.

7.2 Overview

The Acceleration System Driver is the kernel module responsible for initializing the
Security subsystem on EP80579 integrated processor. It performs the following
primary tasks:

• PCI driver for the Ring Controller and ASU cluster devices.

• loads firmware to the Acceleration Engines in the Acceleration Services Unit.

• provides hardware-related services for sub-component modules, for example,
interrrupt management services.

• provides an interface to extract information set up by pre-boot firmware about non-
coherent and coherent DRAM regions.

• controls the initialization and shutdown of the sub-component modules that make
up the Security Subsystem.

• enables system resource variables to be modified using a user-space component
that reads a configuration file at startup.

7.3 Functional Description

7.3.1 Configuration

Table 6 and Table 7 list the system resource variables.

Boot Time Configuration Instructions on page 34 provides more information.

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
August 2009 PG
Order Number: 320183-004US 33

ASD Module Architecture Overview—Security Software

Table 6. Cryptographic System Resource Variables

Parameter Name Description Default
Value

NUM_CONCURRENT_LAC_SYMMETRIC_REQUESTS

Number of concurrent Cryptographic
(LAC) symmetric requests allowed.
Resources will be allocated during system
initialization to support the specified
number of concurrent requests.
Specifically, this affects LAC Cipher, Hash
and Combined Cipher and Hash requests,
LAC Key and Mask Generation requests,
and LAC Random Number Generation
requests.

768

NUM_CONCURRENT_LAC_ASYMMETRIC_REQUESTS

Number of concurrent Cryptographic
(LAC) asymmetric requests allowed.
Resources will be allocated during system
initialization to support this number.
Specifically, this affects LAC Public Key
Encryption requests for RSA, DSA, Diffie-
Hellman, Prime Number Testing and Large
Number Operations.

512

LAC_RANDOM_CACHE_SIZE
Size of a buffer used to preallocate LAC
random numbers in a cache to use in
synchronous mode.

131070

Table 7. Resource Variables

Parameter Name Description Default
Value

ET_RING_LOOKASIDE_INTERRUPT_COALESCING_ENABLE Enable interrupt coalescing on the
ring. 1

ET_RING_LOOKASIDE_COALESCE_TIMER_NS

Frequency of coalesced interrupt for
the ring in nanoseconds
Note: The resolution of this timer is

SKU-dependent with a
minimum accuracy of 5
nanoseconds.

10000

ET_RING_MSI_INTERRUPT_ENABLE

Enable MSI interrupts for the ring
controller. This setting improves
performance, taking advantage of
fully implemented APIC.
0 = Use INTx interrupts
1 = Use MSI interrupts (Default)

1

ET_RING_FAST_INTERRUPT_ENABLE

Supported on FreeBSD only:
Enable FAST (filtered) Interrupts for
the Ring Controller. This setting
improves performance.
Enable it only if the registered
callback will not execute any
potentially blocking operation.
0 = FAST interrupts disabled
1 = FAST interrupts enabled (Default)

1

Security Software—

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
PG August 2009
34 Order Number: 320183

7.4 Boot Time Configuration Instructions

A user space configuration program (asd_ctl) is included in the release package and is
run automatically as part of the load script.

The configuration file /etc/icp_asd.conf is a simple configuration file containing the
user-specified system resource variables and the values to be read into / set by the
kernel in the configuration table.

The syntax for updating the configuration file is as follows:
comment
token = value
token = value # comment

Blank lines are ignored and white spaces before and after a token or value are ignored.

Comments are denoted by the ‘#’, any text read after a # symbol is ignored.

Note: If the same system resource variable is specified more than once in the configuration
file, the last value read will be the one which is set in the configuration table.

A warning message will be printed if invalid syntax in the configuration file is
encountered. The default values will be applied to all system resource variables that are
not specified in the configuration file.

If an invalid value is specified for a system resource variable, a warning message will
be printed and the default value will be applied.

Refer to Section 7.3.1 for a list of system resource variables that can be configured in
the /etc/icp_asd.conf configuration file.

Example 1. Sample Configuration File

#icp_asd.conf example

#

NUM_CONCURRENT_LAC_SYMMETRIC_REQUESTS= 768

NUM_CONCURRENT_LAC_ASYMMETRIC_REQUESTS= 512

LAC_RANDOM_CACHE_SIZE= 131070

ET_RING_LOOKASIDE_INTERRUPT_COALESCING_ENABLE = 1

ET_RING_LOOKASIDE_COALESCE_TIMER_NS = 10000

ET_RING_MSI_INTERRUPT_ENABLE = 0

§ §

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
August 2009 PG
Order Number: 320183 35

ASD Hardware Services—Security Software

8.0 ASD Hardware Services

8.1 What’s New in this Chapter

• No updates in this release.

8.2 Overview

This section describes the hardware-related services that the Acceleration System
Driver (ASD) kernel module supplies to other modules.

The Acceleration System Driver controls the initialization and shutdown of other
components that make up the Security Software Subsystem. Those components are:

• Hardware Access Layer (HAL)

• Debug Common Component (DCC)

• QAT Access Layer (QAT-AL)

• Lookaside Crypto Layer (LAC)

The initialization of the sub-components consists of a two stage process. Each sub-
component provides an “init” function and a “start” function. The init function allocates
resources required by the sub-component. The start function is provided that
completes the initialization and finally enables the sub-component. ASD first invokes all
sub-component init functions and then all the start functions. The ASD invokes them in
the following order: HAL, DCC, QAT-AL, LAC.

The shutdown of the sub-components is the converse of the initialization mechanism
and follows a similar two stage process. Each sub-component provides a “stop”
function and a “shutdown” function. The stop function disables the sub-component. The
shutdown function deallocates resources used by the sub-component.

8.3 Functional Description

This section describes the hardware-related services provided by ASD:

• Interrupt Management Services

• NCDRAM/CDRAM Interface

8.3.1 Interrupt Management Services

ASD registers an interrupt service routine with the Host OS, which enables:

• QAT-AL interrupt handler to process interrupts raised on rings 0-31

To enable ASD to provide these capabilities, the primitives listed in Table 8 are used:

Security Software—ASD Hardware Services

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
PG August 2009
36 Order Number: 320183

The sequence diagram in Figure 7 illustrates how this operates:

Table 8. QAT-AL ISR Primitives

Function/Symbol Description Usage

QatComms_intr This is the QAT-AL main ISR
function

Used by ASD to bind to the Ring
Controller IRQ for processing of
interrupts on rings 0-31.

QatComms_bh_handler
This is the QAT-AL Bottom Half
function

Used by ASD to bind to the
Bottom Half Interrupt Handler
for processing of interrupts on
rings 0-31.

QatComms_bh_schedule_register This function call enables the
ASD register a function that will
allow QAT-AL to schedule the
Bottom Half Interrupt Handler

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
August 2009 PG
Order Number: 320183 37

ASD Hardware Services—Security Software

Figure 7. ISR Sequence Diagram

Ring Controller Interrupt
occurs

InterruptQAT-AL

Init QATAL

Create BH

Register BH
Schedule function

Register the
interrupt Handler

for the Ring
Controller

Interrupt on
Rings 0 –31?

Invoke ASD
Schedule function

Schedule BH
Handler

Call the QATAL Top Half Handler Function

Return IRQ Handled

BH Scheduled QATAL BH Handler Invoked

ASDOS

ASD Handler
Function

Security Software—ASD Hardware Services

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
PG August 2009
38 Order Number: 320183

8.3.2 NCDRAM/CDRAM Interface

8.3.2.1 Development Board Environment

The EP80579 with QuickAssist SKUs provide a direct non-coherent (NCDRAM) path
between AIOC devices and the Memory Controller which is highlighted in red in
Figure 8 on page 39.

The Software for Intel® EP80579 Integrated Processor product line uses three different
memory regions, as defined in Table 9. The BIOS is responsible for setting up these
regions. The IA/ASU Shared coherent and IA/ASU Shared AIOC-Direct (NCDRAM)
regions allow the IA and ASU to manage a private pool of memory without OS
involvement. For more information on these regions, refer to the Intel® EP80579
Integrated Processor Product Line Datasheet, Section 3.0.

The IA/ASU Shared coherent and NCDRAM requirements for a particular software
package are defined in the [GET_STARTED_GD], "Coherent and Non-Coherent Memory
Allocation" section.

The IA O/S, IA/ASU Shared coherent, and NCDRAM memory regions are allocated from
the available system memory. The amount of DRAM available for allocation is located
from address 0x00000000 to the value stored in the TopOfLowMemory (TOLM) register.
The IA O/S, IA/ASU Shared coherent, and NCDRAM memory regions are allocated from
available DRAM locations beginning with TOLM downward. NCDRAM memory space is
allocated first, followed by IA/ASU Shared coherent, followed by IA O/S memory space.
See Figure 9 on page 40 for more details.

Table 9. Memory Region Definitions

Datasheet
Name

Software
Name Managed By IA Cache

Coherent†† Contents

IA O/S IA O/S O/S Y IA O/S and application code and
data structures

IA/ASU Shared
(Coherent) CDRAM EP80579

Driver† Y IA and AIOC shared data structures

IA/ASU Shared
(AIOC-Direct) NCDRAM EP80579

Driver† N
AIOC data structures; IA-32 core
may access a portion via the
EP80579 driver

† The EP80579 Driver includes the EP80579-specific software stacks that run on the IA, ASU, etc.
†† Indicates whether accesses to the region from the AIOC are coherent with the IA L2 cache.

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
August 2009 PG
Order Number: 320183 39

ASD Hardware Services—Security Software

Figure 8. Intel® EP80579 Integrated Processor with Intel® QuickAssist Technology
Block Diagram

Acceleration and I/O Complex ‡ Enabling software required.

IMCH

PCI
Express
Interface

(x1)

(Gen1,
1x8, 2x4 or

2x1 root
complex)

IA Complex

IA
-3

2
co

re

L2
 C

ac
he

(2
56

 K
B

)

IICH

APIC, DMA, Timers, Watch Dog
Timer, RTC, HPET (x3)

Memory Controller HubFSB

EDMA

Memory Controller

(DDR-2 400/533/667/800,
64b with ECC)

TDM
Interface‡

(12 E1/T1)

Local
Expansion

Bus
(16b @
80 MHz)

MDIO (x1)
CAN (x2)
SSP (x1)

IEEE-1588

Acceleration
Services Unit‡

Security
Services Unit‡

(3DES, AES, (A)RC4,
MD5, SHA-x, PKE,

TRNG)

256 KB
ASU SRAM

GigE
MAC

#2

GigE
MAC

#0

GigE
MAC

#1

Transparent
PCI-to-PCI Bridge

n
o
n
-c

oh
er

en
t/

N
C
D

R
A
M

UART (x2)
GPIO (x36)
SMBus (x2)

SATA 2.0
(x2)

USB 2.0
(x2)

SPI
LPC1.1

Security Software—ASD Hardware Services

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
PG August 2009
40 Order Number: 320183

8.3.2.1.1 ACPI

ASD uses the ACPI mechanism to retrieve the memory region information set up by the
pre-boot firmware.

This mechanism is dependent on an ACPI BIOS which supports four methods, each of
which provides the equivalent to the EFI variables as outlined in Table 10.

The ASD device driver evaluates the ACPI methods to retrieve the pointer and sizes of
the memory allocated in the BIOS. Each OS supports different interfaces to evaluate
the ACPI methods.

§ §

Figure 9. Intel® EP80579 Integrated Processor Address Space

PCI L

Open

CDRAM

0000_0000

Memory Map (32-bit)
FFFF_FFFF

MENCBASE

TOM/TOLM

FFFC_0000

MENCLIMIT

Device I/O

NCDRAM

IA/ASU Shared
(Coherent)

Expanded View
see Memory Regions table

IA O/S

Table 10. ACPI Shared RAM Methods

EFI Variable Name ACPI Method

AccHWCoherentMemoryBase method(PCMB, 0, serialized)

AccHWCoherentMemorySize method(SCMB, 0, serialized)

AccHWnonCoherentMemoryBase method(PNMB, 0, serialized)

AccHWnonCoherentMemorySize method(SNMB, 0, serialized)

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
August 2009 PG
Order Number: 320183-004US 41

Using the API—Security Software

Part 2: Using the API
This part of the document provides an overview of how to use the EP80579 security software
acceleration APIs to build an application.

Individual APIs are described in their corresponding reference manuals, which are listed in Table 1,
“Related Documents and Sample Code” on page 8. The reference manuals contain details of the data
structures, data types, function signatures, and other detailed constructs to allow you to call
individual functions correctly.

This part of the document is where you look to understand how to string such calls together to do
something useful. The chapters in this part of the document are organized as follows:

• Chapter 9.0, “Introduction to Use Cases” gives an introduction to building an application using the
Acceleration APIs.

• Chapter 10.0, “Programming Model” describes the programming model which is common to all of
the Acceleration APIs. This includes an overview of the coding conventions, as well as the
invocation model for the asynchronous APIs.

• Chapter 11.0, “Debugging Applications”

• Chapter 12.0, “Using the Intel® QuickAssist Technology Cryptographic API”

• Appendix A, “NPF Copyright Notice”

§ §

Security Software—Introduction to Use Cases

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
PG August 2009
42 Order Number: 320183-004US

9.0 Introduction to Use Cases

This chapter discusses what’s involved in building an application using the Intel®
EP80579 Software for Security Applications on Intel® QuickAssist Technology.

9.1 What’s New in this Chapter

Added Note in Section 9.2.1 explaining cryptographic framework “shim” support.

9.2 Use Cases

There are a wide variety of security applications that can be developed using the Intel®
EP80579 Software for Security Applications on Intel® QuickAssist Technology.

Each of these use cases will be described in more detail in later chapters within this
document.

9.2.1 Lookaside Acceleration Model

Key use cases for the lookaside acceleration model are:

• A client may wish to use the Cryptographic API to accelerate cryptographic
operations. This may be with a view to accelerating the encryption/decryption of
“data at rest” — for example, files in a file system — or for protecting “data on the
move” — for example, packets in a network. An existing application can be
modified, or new code can be written from scratch, to use the Cryptographic API.

• In other cases, a client may be using a cryptographic framework, such as the
OpenBSD* Cryptographic Framework (OCF). Intel supplies a driver which enables
the Cryptographic features to be accessed via OCF; this driver is sometimes
referred to as the “OCF shim”, or adapter. In this way, the cryptographic operations
are transparently and seamlessly accelerated.

Note: The EP80579 security software release package version 1.0.3 does not
support OpenBSD/FreeBSD Cryptographic Framework (OCF), OCF-Linux, or
any open source projects such as Openswan*, OpenSSL*, or Racoon*. If
your application requires OCF, you must use security software package
version 1.0.2 which includes shim software to enable OCF support.

• A client may wish to accelerate a cryptographic protocol, such as IPSec. The open-
source Openswan* project is an implementation of IPSec that can use OCF for
implementing cryptographic operations. By using the “OCF shim” described above,
a client can utilize the seamless acceleration of the cryptographic operations.

See Chapter 12.0, “Using the Intel® QuickAssist Technology Cryptographic API” for a
more detailed description of these usage models.

§ §

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
August 2009 PG
Order Number: 320183-004US 43

Programming Model—Security Software

10.0 Programming Model

10.1 What’s New in this Chapter

No updates in this release.

10.2 Overview

There are two different “categories” of API supplied with EP80579 integrated processor
software, as follows:

• APIs which are part of the Intel® QuickAssist Technology program. The only API in
this software release which falls into this category is the [CRYPTO_API]. The set of
conventions governing these APIs are documented in Section 10.3, “Intel®
QuickAssist Technology API Conventions” on page 43.

• “Other” APIs, which are not part of the Intel® QuickAssist Technology program.
The only API in this software release which falls into this category is the
[DEBUG_API]. The set of conventions governing these APIs are documented in
Section 10.4, “Other API Conventions” on page 45.

10.3 Intel® QuickAssist Technology API Conventions

Note: This section discusses conventions for APIs which are part of the Intel® QuickAssist
Technology program, such as [CRYPTO_API].

10.3.1 Memory Allocation and Ownership

The convention is that all memory needed by an API implementation is allocated
outside of that implementation. In other words, the APIs are defined such that the
memory needed to execute operations are supplied by a client entity or platform
control entity rather than having memory allocated internally.

Memory used for parameters are owned by the side (caller or callee) that allocated
them. An owner is responsible for de-allocating the memory when it is no longer
needed. If an API has an allocation function, it shall also have a symmetric de-
allocation function. The caller of the allocation function acts as the owner and is
responsible for invoking the appropriate de-allocation routine when the memory is no
longer needed.

Generally, memory ownership does not change. For example, if a program allocates
memory and then passes a pointer to the memory as a parameter to a function call, the
caller retains ownership and is still responsible for de-allocation of the memory. This is
the default behavior and any function which deviates from this behavior must clearly
state so in the function definition.

Security Software—Programming Model

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
PG August 2009
44 Order Number: 320183-004US

10.3.2 Data Buffer Models

Data buffers that are passed across the API interface in one of the following formats:

• Flat Buffers represent a single region of physically contiguous memory, and are
described in Section 10.3.2.1, “Flat Buffers” on page 44.

• Scatter Gather Lists are essentially an array of flat buffers, for cases where the
memory is not all physically contiguous. These are described in Section 10.3.2.2,
“Scatter Gather Lists” on page 44.

10.3.2.1 Flat Buffers

Flat buffers are represented by the type CpaFlatBuffer, defined in the file cpa.h. It
consists of two fields:

• data pointer which points to the start address of the data or payload. This is a
virtual address. The data to which this points is required to be in contiguous
physical memory.

• length of this buffer

For additional details, see Section 12.4.1, “Flat Buffers” on page 64.

10.3.2.2 Scatter Gather Lists

A scatter gather list is defined by the type CpaBufferList, also defined in the file cpa.h.
The buffer list contains four fields, as follows:

• number of buffers in the list

• pointer to an unbounded array of flat buffers

• user data: an opaque field and is not read or modified internally by the API

• pointer to meta data required by the API: The meta data is required for internal use
by the API. The memory for this buffer needs to be allocated by the client as
contiguous data. The size of this meta data buffer is obtained by calling the
appropriate GetMetaSize function.

For additional details, see Section 12.4.2, “Buffer List” on page 65.

10.3.3 Synchronous and Asynchronous Support

The Cryptographic API may be called in either asynchronous or synchronous modes.

10.3.3.1 Asynchronous Operation

The caller specifies asynchronous mode by supplying a callback function to the API.
Control returns to the client once the request message has been sent to the SSU; the
function does not block. The callback is invoked in a bottom half context (on Linux, this
is a tasklet) when the SSU completes the operation.

This mode is preferred for optimal performance.

10.3.3.2 Synchronous Operation

The caller specifies synchronous mode by not supplying a callback function pointer; a
NULL function pointer is passed. Once the request message has been sent to the SSU,
the thread of execution blocks pending receipt of the response, or a timeout. Once a
response is received from the SSU, it is processed, and the calling thread is unblocked
and resumes processing.

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
August 2009 PG
Order Number: 320183-004US 45

Programming Model—Security Software

Because it is blocking, synchronous mode should not be used in contexts where
blocking is not allowed, for example in interrupt context on Linux.

10.3.4 Pre-Registration

In a number of accelerator use cases, the concept of a session applies. A session
consists of a setup, multiple data phases and a tear down. The data phases are
typically long lived (with respect to session setup time); as a result there is a class of
API that requires registration. For example, symmetric cryptographic operations can
benefit from pre-registration. Data which is common to all operations can be provided
and/or pre-computed at session initialization time.

Alternately, there are scenarios where all the required data for a call are available at
the time of the call. These do not require pre-registration of a session.

10.4 Other API Conventions

Note: This section discusses conventions for APIs which are not part of the Intel® QuickAssist
Technology program, such as [DEBUG_API].

The “other” Acceleration APIs use some common conventions and share a common
programming model, which is loosely based on [NPF API]. Some of the key differences
between the NPF conventions and those adopted by the Acceleration APIs are
summarized below.

• Callback registration is not required, as described in Section 10.4.1

• Memory allocation and ownership is clarified, as described in Section 10.4.2

• Callback data structures are clarified, as described in Section 10.4.3

10.4.1 Asynchronous API and Function Completion Callbacks

Similar to what is described in Section 7 of [NPF API], most of the Acceleration APIs are
asynchronous. Completion of the work associated with an API function call is indicated
not by the return of the function, but by the invocation of a separate completion
callback function by the callee to the caller. This can be thought of as a request/
response mechanism. Such an asynchronous API allows for greater parallelism to be
achieved, while still allowing synchronous behavior to be easily layered on top of the
asynchronous callbacks if desired.

This asynchronous request/response model is suitable for an architecture such as the
EP80579 security software’s, where requests to perform cryptographic or other
operations can be sent to dedicated on-chip accelerators, and then responses received
when the operation is complete. The requests and responses are typically sent via
rings, as described in Chapter 2.0, “Silicon Overview.”

The key differences between the conventions adopted by the Acceleration APIs versus
those described in [NPF API] are as follows:

• Callback registration (and de-registration) is not required. The complexity imposed
on applications to manage callback handles was judged to outweigh any potential
benefits. As a result of this:

— Instead of passing a callback handle to every asynchronous function on the
Acceleration APIs, a function pointer is passed in.

— There is only one type of application context information, namely the correlator
which is provided at API function call time. The user context, which is provided
at callback registration time in the NPF model, is not required.

Security Software—Programming Model

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
PG August 2009
46 Order Number: 320183-004US

• There is a 1:1 relationship between an asynchronous request call and a completion
callback (response). [NPF API] allows for 1:N relationships here. The complexity
associated with managing multiple responses per callback was judged to outweigh
the potential performance benfit of coalescing responses. As a result of this:

— There is only one asynchronous response per callback.

— There is no need for an overall status.

— There is no need for the callback data to contain a number/array of
asynchronous responses.

For a summary of what is contained within this callback data structure, see Section
10.4.3, “Callback Data Structures” on page 46.

Note that the context in which callbacks are invoked is described in Section 3.5,
“Process View” on page 18.

10.4.2 Memory Allocation and Ownership

[NPF API], Section 6.4, briefly discusses memory ownership. To make the issue clearer,
the following conventions have been adopted.

For all output parameters on asynchronous API functions, the following memory
allocation model applies:

• Memory should be allocated by the client

• The memory is passed into the Acceleration API function as a pointer.

• The pointer is returned in the callback data structure, which is a parameter to the
completion callback function.

• Memory should be freed by the client.

This means that ownership is temporarily granted to the asynchronous API
implementation, and reverts to the client only after the function completion callback
function is invoked. See Section 10.4.1, “Asynchronous API and Function Completion
Callbacks” on page 45 for details.

In some of the EP80579 security software APIs, there are numerous input and output
parameters, and/or multiple parameters within a single data structure, some of which
are inputs and some of which are outputs. To make the memory ownership clear in
these cases, all memory for which ownership is temporarily granted to the API
implementation should be grouped into a single data structure. By convention, this
data structure has the suffix “_op_data_t” (for operation data).

Where there is a single output parameter, this struct is typically not created.

Any exceptions to this model are documented by the corresponding APIs. For example,
in some cases, the ownership of a data structure is retained by the API implementation
even after the function completion callback has been invoked.

10.4.3 Callback Data Structures

The function completion callback function takes the following parameters:

• Correlator (discussed in Section 10.4.1, “Asynchronous API and Function
Completion Callbacks” on page 45)

• Callback data structure, which contains the following information:

— Status of the requested operation

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
August 2009 PG
Order Number: 320183-004US 47

Programming Model—Security Software

— Operation type. For the typical case, where the same callback data structure
type is used for multiple different functions (operation types) on a given API,
this is used to distinguish the function for which this is the response.

— Operation-specific data. This may be the data structure described in Section
10.4.2, “Memory Allocation and Ownership” on page 46 with the suffix
_op_data_t, or it may be a single output parameter. In the case where there
are multiple different types of operation-specific data, depending on the
operation type, then all are provided within a union construct; the operation
type can be used to decide which field of the union is valid.

10.4.4 Return Codes

Note: This section discusses error values for APIs which are not part of the Intel® QuickAssist
Technology program, such as [DEBUG_API].

In the case of an error occurring when an API function is invoked, the API function will
return with the error condition and no function completion callback function will be
invoked.

Table 11 shows the error values that are defined in icp.h, along with their descriptions.

§ §

Table 11. Error Values for Other APIs

Value Description

ICP_E_NO_ERROR Success status.

ICP_E_FAIL Fail status.

ICP_E_RETRY

Retry status. Indicates a temporary condition exists which prevents the
request from being completed at this time, usually due to the limited
capacity of some internal resource being exhausted such as internal
message queue is full, internal buffer pool is empty, etc.
Recommended approach is to wait for a short amount of time (1 millisecond
or less) and submit the request again. This is expected behavior, but may be
an indication that some system-level tuning is required, for example, to
increase internal resource limits or to throttle the rate of new request
submissions.

ICP_E_UNDERFLOW Underflow error - client is under submitting data.

ICP_E_OVERFLOW Overflow error - client is over submitting data.

ICP_E_INVALID_PARAM Invalid parameter passed in.

ICP_E_NULL_PARAM One or more parameters is null.

ICP_E_MUTEX Failure with a mutex operation.

ICP_E_RESOURCE Error related to system resource.

ICP_E_FATAL A serious error has occurred. Recommended course of action is to shutdown
and restart the component.

ICP_E_ALREADY_REGISTERED An attempt was made to register (for example a callback) with the same
"key" value as an existing registration.

ICP_E_INVALID_HANDLE An invalid handle was passed in.

ICP_E_NOT_SUPPORTED Operation not supported in the current implementation.

Security Software—Debugging Applications

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
PG August 2009
48 Order Number: 320183-004US

11.0 Debugging Applications

11.1 What’s New in this Chapter

• No updates in this release.

11.2 Management Interface Layer (MIL) Introduction

A reference application called Management Interface Layer (MIL) is provided in order
for the users to make use of the DCC APIs provided. MIL provides a framework for
triggering and logging of various debug features in a uniform and generic manner. The
MIL application by itself does not generate any debug information. MIL makes use of
the APIs exposed by the DCC component and generates a standard Linux* log file
called syslog.

Note: It is the responsibility of the programmer to ensure the syslog maximum size is > 4 k
messages or debug messages may be lost.

Figure 10 illustrates debug components and how they fit together:

The MIL application provides user space commands in order to enable/disable debug
logging as well as trigger logging for Version, Liveness, Data dump as well as SEN
events.

Figure 10. Management Interface Layer Architecture Decomposition

MIL Kernel Space
IOCTL Command Handler

Debugmgr
executable

via filesystem write

IOCTL Interface

Debug Common Component (DCC)

System Log
File

User Space

Kernel Space

Acceleration API Interface

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
August 2009 PG
Order Number: 320183-004US 49

Debugging Applications—Security Software

The MIL application is invoked from the command line using the following syntax:
debugmgr {command}
where {command} is one of the following:

— help

— DebugEnable

— DebugDisable

— VersionDumpAll

— setHC <timeout>

— SystemHealthCheck

— DataDump (not supported in this release)

— SetFileName <filename>

These commands are described in more detail in Section 11.3.

11.2.1 Loading the MIL Application

On FreeBSD, load the debug manager using the following commands:

cd /EP805XX_release
setenv ICP_ROOT $PWD
kldload $ICP_ROOT/StagingArea/icp_debugmgmt.ko

On Linux, follow these steps:

1. Load the debug manager using the following commands:

cd /EP805XX_release
export ICP_ROOT=$PWD
insmod $ICP_ROOT/StagingArea/icp_debugmgmt.ko

2. Create a character device /dev/mil_driver using the following steps:

a. Find the device major number associated with the character device /dev/
mil_driver using the following command:

cat /proc/devices | grep mil_driver

The following is a sample output from the above command:

249 /dev/mil_driver

b. Use the device major number displayed by the above command to create the
character device using the following command:

mknod /dev/mil_driver c <device major number> 0

If we use the sample output from step a., then the mknod command would be:

mknod /dev/mil_driver c 249 0

11.3 MIL User Command Details

Note: The debugmgr must be enabled using the option ‘DebugEnable’ before it can display
information and must be disabled using the option ‘DebugDisable’ at the end of it.

Security Software—Debugging Applications

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
PG August 2009
50 Order Number: 320183-004US

11.3.1 help

The help command lists all the user space commands available.

11.3.2 DebugEnable

The DebugEnable command enables the debug facility within the EP80579 security
software acceleration subsystem. This command must be invoked before any other
command is invoked. Specifically, DebugEnable does the following:

• reports the version information for all components within the software stack, and
logs this information to the system log in a well-defined format.

• registers for all System Error Notifications. The SEN handler simply logs the errors
to the system log.

• sets a default value (500 ms) for the "liveness" polling interval.

See Figure 11 for an illustration of this behavior.

Figure 11. Sequence Diagram for DebugEnable Command

User Space Kernel Space

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
August 2009 PG
Order Number: 320183-004US 51

Debugging Applications—Security Software

11.3.3 DebugDisable

The DebugDisable command disables the debug facility within the EP80579 security
software acceleration subsystem. Specifically, it unregisters the SEN handlers
registered at DebugEnable time. It then disables further command invocation other
than DebugEnable from the user side.

Figure 12. Sequence Diagram for DebugDisable Command

User Space Kernel Space

Security Software—Debugging Applications

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
PG August 2009
52 Order Number: 320183-004US

11.3.4 VersionDumpAll

This command results in the version of all components within the software stack being
logged to the syslog file as specified in Figure 13.

Figure 13. Sequence Diagram for VersionDumpAll Command

User Space Kernel Space

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
August 2009 PG
Order Number: 320183-004US 53

Debugging Applications—Security Software

11.3.5 setHC <timeout>

This command is used to specify the maximum time interval for any one thread to
punch the liveness value. When the timeout is exceeded, a thread that has not
indicated it is alive will be reported as dead. After getting all the timeout values for
each of the threads in the system, the system application needs to define this value
and set it appropriately.

The valid range for <timeout> is from 100 to 5000 milliseconds.

Note: If the value is too small, it is possible that false reports of dead threads will be
received.

Figure 14. Sequence Diagram for setHC Command

User Space Kernel Space

Security Software—Debugging Applications

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
PG August 2009
54 Order Number: 320183-004US

11.3.6 SystemHealthCheck

This command causes the liveness of each active thread in the system to be queried
and displays this information in the syslog file as shown in Figure 15.

Figure 15. Sequence Diagram for SystemHealthCheck Command

User Space Kernel Space

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
August 2009 PG
Order Number: 320183-004US 55

Debugging Applications—Security Software

11.3.7 DataDump

Note: The Data Dump feature is not supported in the current software release.

This command is used to generate a data dump from the entire acceleration
subsystem. The Debug API is queried to determine the maximum amount of memory
required by any one component. This amount of memory is then allocated, and passed
in turn to each component to dump its data, which is then written to the system log.

Figure 16. Sequence Diagram for DataDump Command

User Space Kernel Space

Security Software—Debugging Applications

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
PG August 2009
56 Order Number: 320183-004US

11.3.8 SetFileName <filename>

This command is used to set the name of the system log file which contains all the
debug information. The maximum length of the <filename> is 256 characters.

Note: If this command is not called, by default, the information will be stored in:
/var/log/icp_debugmgmt.log

11.4 APIs

Figure 17. Sequence Diagram for SetFileName Command

Table 12. Debug APIs (Sheet 1 of 2)

Name Description

icp_DccVersionInfoSizeGet

This function provides the DCC Client with buffer size needed to
retrieve Version information of all the Package/Components
registered with DCC.
The user should allocate this buffer and pass it to DCC to retrieve
the Package and Components version information.

icp_DccSoftwareVersionGet

This function provides the caller with version information for the
Package and each of the Components registered with the DCC.
This function should be called with the required amount of buffer
allocated for the returned information.

icp_DccLivenessConfigureTimeout

This API is used to configure the timeout period (in ms) for response
monitoring. The DCC waits for a response during this period before
declaring a thread to be alive or dead.
Note that the timeout period should be large enough to allow each
of the threads to individually respond within this period.
The timeout value should be defined to accommodate threads with
large workloads.

User DebugMgr_EXE DebugMgr_Kernel_Driver

debugmgmt SetFileName

DCC

SetFileName Ioctl Call

Returns Success/Failure

User Space Kernel Space

Prints Command Successful/Failed

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
August 2009 PG
Order Number: 320183-004US 57

Debugging Applications—Security Software

§ §

icp_DccLivenessResponseSizeGet

The user calls this API to get the buffer size to be allocated for the
retrieval of system response information.
The user should free this buffer after the buffer information is
processed.

icp_DccLivenessVerify
The user calls this API to verify response of all threads of execution
in the system. The user provides the required buffer which the DCC
fills with Response status information.

icp_DccDataDumpInfoGet

This function returns the number of Modules and the maximum size
of buffer needed for any one dump query transaction.
Before invoking the Data Dump query request, the user gets the
maximum size of the buffer to allocate and the total number of
Modules that should be queried for the data dump.

icp_DccDataDumpGet

The user should use this function to dump the data structures of
Modules registered with the DCC. This function will be called once
for each registered Module for the data dump information. With
each call, the user passes to DCC a pre-allocated buffer which is
passed to the Module to be filled with the dump information.

icp_DccSenHandlerRegister

The user registers the SEN event callback handler with this function.
When a SEN event occurs, the DCC calls the handler registered in
this prototype format.
Note: If no callback is registered by the user, then it will default to

syslog.

icp_DccSenHandlerUnregister The user unregisters the SEN event callback handler.

Table 12. Debug APIs (Sheet 2 of 2)

Name Description

Security Software—Using the Intel® QuickAssist Technology Cryptographic API

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
PG August 2009
58 Order Number: 320183-004US

12.0 Using the Intel® QuickAssist Technology
Cryptographic API

The Intel® QuickAssist Technology Cryptographic API for the Lookaside Model is
described in the API user reference document [CRYPTO_API]. Most of the API functions
support both asynchronous and synchronous invocation, except for those used to
initialize and remove sessions and for getting statistics which support synchronous
invocation only. This chapter provides a brief overview of the API.

12.1 What’s New in this Chapter

• Section 12.9 and Section 12.10: New Note to explain shim support

12.2 Intel® QuickAssist Technology Cryptographic API

The API is documented in the [CRYPTO_API] document. The API can be split into three
broad areas. These are as follows:

• Common: The cpa.h, cpa_cy_common.h and icp_lac_cfg.h files define common
API, enums and so on, which both the symmetric and asymmetric APIs use.

• Instance Management: The cpa_cy_im.h file defines the functions for managing
instances.

• Symmetric: The cpa_cy_sym.h file contains the symmetric API for hashing,
cipher, algorithm chaining and authenticated encryption. The cpa_cy_key.h file

Table 13. Cryptographic Common Interface Summary (icp_lac_cfg.h)

Method Description

icp_AsdCfgLacInit Initialize the Cryptographic Service setting up all static data
tables.

icp_AsdCfgLacShutdown Shutdown the Cryptographic Service, therefore cleaning up all
resources owned by the module

icp_AsdCfgLacStart Start the Cryptographic services, it is assumed at this point
Cryptographic has been initialized.

icp_AsdCfgLacStop Stop the Cryptographic services.

Note: These APIs are called by the ASD component to ensure correct initialization/shutdown procedures.

Table 14. Cryptographic Instance Management Summary (cpa_cy_im.h)

Method Description

cpaCyStartInstance This function will initialize and start the Cryptographic
component.

cpaCyStopInstance This function will stop the Cryptographic component and free all
system resources associated with it.

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
August 2009 PG
Order Number: 320183-004US 59

Using the Intel® QuickAssist Technology Cryptographic API—Security Software

contains the API for key generation. The file cpa_cy_rand.h contains the API for
random number generation.

• Asymmetric: The PKE API is contained in various files. The cpa_cy_rsa.h file deals
with RSA. The cpa_cy_dsa.h file deals with DSA. The cpa_cy_dh.h file deals with
Diffie-Hellman. The cpa_cy_prime.h file deals with prime number generation and
testing. The file cpa_cy_ln.h contains the API for large numbers.

Table 15. Cryptographic Symmetric Interface Summary (cpa_cy_sym.h)

Method Description

cpaCySymInitSession Initialize a symmetric cryptographic session.

cpaCySymRemoveSession Remove a symmetric cryptographic session.

cpaCySymPerformOp Perform a symmetric cryptographic operation.

cpaCySymSessionCtxGetSize Get the size of the memory the client must allocate in order to
store the session context.

cpaCySymQueryStats Query statistics for symmetric cryptographic operations.

Table 16. Cryptographic Symmetric Key Interface Summary (cpa_cy_key.h)

Method Description

cpaCyKeyGenSsl Acceleration of SSL Key Generation.

cpaCyKeyGenTls Acceleration of TLS Key Generation.

cpaCyKeyGenMgf Acceleration of mask generation operations.

cpaCyKeyGenQueryStats Query statistics for symmetric key expansion/generation.

Table 17. Cryptographic Asymmetric Rand Interface Summary (cpa_cy_rand.h)

Method Description

cpaCyRandGen Generate random bits or a random number.

cpaCyRandSeed
Seed or perform a seed update on the random data generator.
Entropy testing and reseeding are performed automatically on
the EP80579, therefore this API returns CPA_STATUS_SUCCESS.

cpaCyRandQueryStats Query statistics for random bits/number generation.

Table 18. Cryptographic Asymmetric RSA Interface Summary (cpa_cy_rsa.h)

Method Description

cpaCyRsaKeyGen Generate RSA keys.

cpaCyRsaEncrypt Encrypt a message using an RSA public key.

cpaCyRsaDecrypt Perform an RSA decrypt or sign operation on the input data.

cpaCyRsaQueryStats Query statistics RSA operations.

Table 19. Cryptographic Asymmetric Diffie-Hellman Interface Summary (cpa_cy_dh.h)

Method Description

cpaCyDhKeyGenPhase1 Accelerate Diffie-Hellman phase 1 operations.

cpaCyDhKeyGenPhase2Secret Accelerate Diffie-Hellman phase 2 operations.

cpaCyDhQueryStats Query statistics for Diffie-Hellman operations.

Security Software—Using the Intel® QuickAssist Technology Cryptographic API

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
PG August 2009
60 Order Number: 320183-004US

12.2.1 Modes of Operation

The Cryptographic API may be called in asynchronous or synchronous modes.

Note: Asynchronous mode is preferred for optimal performance.

12.2.1.1 Asynchronous Operation

In asynchronous mode, the user supplies a callback function to the API. Control returns
to the client after the message has been sent to the SSU and the callback gets invoked
when the SSU completes the operation. There is no blocking. This mode is preferred for
optimal performance.

12.2.1.2 Synchronous Operation

In synchronous mode, the client supplies no callback function pointer (NULL) and the
point of execution is held by a semaphore wait internally after a message is
successfully passed to the SSU. Upon the completion of the operation, an internal
callback function posts to the waiting semaphore and execution will resume.
Synchronous mode is therefore blocking and should not be used when invoking the
function from a context in which sleeping is not allowed, for example, in interrupt
context on Linux. To achieve optimal performance from the API, asynchronous mode is
preferred.

12.2.2 Interrupt Operation

The functions in the Cryptographic API may be invoked in both asynchronous mode and
synchronous mode. In either case, when the response data is available from the SSU,
hardware will inform the system via an interrupt. The QAT-AL component will receive
the interrupt and inform the Cryptographic API Library.

Response processing will be performed in a standard OS bottom half (for Linux, this will
be a tasklet); this will defer much of the work load into a kernel managed bottom half
mechanism without locking the system up by holding the interrupt.

In asynchronous mode, the callback function will be invoked in the context of a tasklet.
In synchronous mode, the work queue is de-queued and the client process resumes.

Table 20. Cryptographic Asymmetric Large Numbers Interface Summary (cpa_cy_ln.h)

Method Description

cpaCyLnModExp
Accelerate modular exponentiation. It calculates:
result = (base ^ exponent) mod modulus.

cpaCyLnModInv
Accelerate modular Inversion. It calculates:
result = (1/A) mod B.

cpaCyLnStatsQuery Query statistics for Large Number operations.

Table 21. Cryptographic Asymmetric Prime Interface Summary (cpa_cy_prime.h)

Method Description

cpaCyPrimeTest Test probabilistically if a number is a prime number.

cpaCyPrimeQueryStats Query statistics for prime number operations.

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
August 2009 PG
Order Number: 320183-004US 61

Using the Intel® QuickAssist Technology Cryptographic API—Security Software

12.2.2.1 Interrupt Coalescing

Interrupt coalescing is the combining of several interrupts into one interrupt. This
feature is available on Intel® EP80579 Integrated Processor. The user may configure
the duration of time over which to collect the interrupts. See Table 7, “Resource
Variables” on page 33 for descriptions of the relevant variables:

• ET_RING_LOOKASIDE_INTERRUPT_COALESCING_ENABLE

• ET_RING_LOOKASIDE_COALESCE_TIMER_NS

12.2.3 Engine and Priority Support

The Cryptographic API is designed to support multiple security services units, or
“engines”. The engine is specified using the CpaInstanceHandle handle type. This
handle will represent a specific engine within the system and will be passed into the
symmetric and asymmetric API.

Note: EP80579 with QuickAssist only supports one engine; this is specified through passing in
the value CPA_INSTANCE_HANDLE_SINGLE to the API for the acceleration handle.

The API tracks the number of outstanding sessions per handle and for public key, the
number of outstanding requests.

The API also has support for priorities per request. In the current release, two levels of
priorities are supported: High priority or Normal priority.

The software uses a weighted round robin-based priority scheme. Each ring has an
assigned negative 'weight' parameter. Every time a particular ring is polled, its current
weight is increased. Once the weight becomes zero, the weight is reloaded with its
assigned initial value and the poll moves to the next non-empty ring.

High priority rings have a larger negative value, meaning they are checked more
frequently before jumping to the next ring.

12.2.4 Statistics

The Cryptographic API supports statistics retrieval and display for the individual
symmetric and asymmetric components. For further information, refer to the API
manual. The following functions are supported:

• Retrieve statistics (symmetric and asymmetric components). The statistics are
retrieved on a per-instance basis - the information stored includes the following:

— number of symmetric sessions initialized, removed and errors

— numbers of requested operations, completed operations, and failed operations
(symmetric and asymmetric components)

12.3 Symmetric Cryptographic API Data Flow

Data flow for the Cryptographic API is shown in Figure 18 and Figure 19 (asynchronous
and synchronous). The assumption here is that the hardware is already initialized and
ready to process commands.

Security Software—Using the Intel® QuickAssist Technology Cryptographic API

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
PG August 2009
62 Order Number: 320183-004US

1. The application or framework initializes a session using the API session initialization
function, this is a synchronous operation. During session initialization pre-
computes for Hash operations will be computed. This will involve an asynchronous
call to the Security Services Unit (SSU) which will return the pre-computes. This
only occurs during Hash operations. To the external Cryptographic API, this call is
synchronous as the asynchronous nature is handled internally in Cryptographic API.
The asynchronous part is hidden from the user by means of a queue.

2. Once the session has been initialized, the status of the session initialization is
returned to the application or framework, along with the session context handle.
The callback parameter is set to the client callback function for asynchronous
mode.

3. The application or framework calls the SymOpPerform function to perform a Crypto
Operation along with the data pointer on which to perform the operation.

Figure 18. Symmetric Asynchronous Intel® QuickAssist Technology Cryptographic API
Data Flow

 Security Access APIs

Security Access Library

Application or
Framework

Acceleration Services Unit (ASU)

(5)

(7)

(3) SymOpPerform
(IN a session ptr)

(1) Session Initialization
(IN func_ptr/NULL,

session_setup_data,
session ptr)

(2) Init Session
(OUT status)

Async

(6)

Perform Callback

User callback

(8)

...
(4)

All modes
Asynchronous modes

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
August 2009 PG
Order Number: 320183-004US 63

Using the Intel® QuickAssist Technology Cryptographic API—Security Software

4. The Cryptographic API makes a call to an internal function which handles the
operation and understands the message format to send to the SSU.

5. The Cryptographic API functions internally format the data as required by the
hardware and send it to the SSU.

6. The SSU performs the required crypto operation.

Note: At this point, behavior diverges depending on whether the function was
invoked synchronously or asynchronously.

7. The SSU after the operation is complete informs the software of the results via an
interrupt.

8. The Cryptographic API calls the opPerform completion callback, along with the
output data after formatting the data. This call executes in the context of a bottom
half.

1. The application or framework initializes a session using the API session initialization
function, this is a synchronous operation. During session initialization pre-
computes for Hash operations will be computed. This will involve a asynchronous
call to the Security Services Unit (SSU) which will return the pre-computes. This
only occurs during Hash operations. To the external Cryptographic API, this call is
synchronous as the asynchronous nature is handled internally in Cryptographic API.
The asynchronous part is hidden from the user by means of a queue.

Figure 19. Symmetric Synchronous Intel® QuickAssist Technology Cryptographic API
Data Flow

Intel® QuickAssist Technology Cryptographic API

Security Access Library

Application or
Framework

Acceleration Services Unit (ASU)

(5)

(8)

(3) SymOpPerform
(IN a session ptr)

(1) Session Initialization
(IN func_ptr/NULL,

session_setup_data,
session ptr)

(2) Init Session
(OUT status)

(6)

wait

Sync
Internal callback

(7)
(9)

...
(4)

(10)

All modes
Synchronous modes

Security Software—Using the Intel® QuickAssist Technology Cryptographic API

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
PG August 2009
64 Order Number: 320183-004US

2. Once the session has been initialized, the status of the session initialization is
returned to the application or framework, along with the session context handle.
The callback parameter is set to NULL for synchronous mode.

3. The application or framework calls the SymOpPerform function to perform a Crypto
Operation along with the data pointer on which to perform the operation.

4. The Cryptographic API makes a call to an internal function which handles the
operation and understands the message format to send to the SSU.

5. The Cryptographic API functions internally format the data as required by the
hardware and send it to the SSU.

6. The SSU performs the required crypto operation.

Note: At this point, behavior diverges depending on whether the function was
invoked synchronously or asynchronously.

7. The client process is blocked via a semaphore, see Figure 19.

8. The SSU after the operation is complete informs the software of the results via an
interrupt.

9. The Cryptographic API calls the opPerform completion callback, along with the
output data after formatting the data. This call executes in the context of a bottom
half.

10. An internal callback function is used instead of the client’s callback. The point of
execution is placed on a work queue after the message is sent to the SSU.

11. After the SSU completes the operation the internal callback is used to de-queue the
process on the work queue.

12. The process is de-queued and returns control to the client code.

12.4 Data Format

All input data to the Cryptographic API is in one of the following formats:

• Flat Buffer: a simple, unchained buffer of physically contiguous memory

• Buffer List: a scatter gather buffer list structure. It is expected that this buffer
structure will be used where more than one flat buffer can be provided on an
particular API

The supported format(s) vary across the API - see the API manual for details on the
formats that are supported by each individual API function.

12.4.1 Flat Buffers

Flat buffers are represented by the type CpaFlatBuffer, defined in cpa.h. Figure 20
shows the layout of the flat buffer. The data pointer, pData, points to the start address
of the data or payload, stored in Buffer. The length of this buffer specified in bytes is
stored in LenInBytes.

The data pointer, pData, is a virtual address, however the actual data pointed to is
required to be in contiguous physical memory. This buffer handle is typically used when
simple, unchained buffers are needed.

Sample routines for handling flat buffers are provided in the OCF shim code, see
[OCF_CODE] for details.

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
August 2009 PG
Order Number: 320183-004US 65

Using the Intel® QuickAssist Technology Cryptographic API—Security Software

12.4.2 Buffer List

The Cryptographic API uses a scatter gather buffer list structure. This buffer structure
is typically used where more than one flat buffer can be provided on an particular API.
A Buffer List is defined by the type CpaBufferList, defined in cpa.h. Figure 21 is a
graphical representation of a buffer list. The buffer list contains four parameters: the
number of buffers in the list, a pointer to an unbounded array of flat buffers, user data
and a pointer to meta data required by the API, pMetaData.

The user data is an opaque field and is not read or modified internally by the API. The
meta data is required for internal use by the API and the memory for this buffer needs
to be allocated by the client as contiguous data. The size of this meta data buffer is
obtained by calling a BufferListGetMetaSize function.

Sample routines for converting between Linux sk_buff structures and CpaBufferList are
provided in the OCF shim code, see [OCF_CODE] for details.

12.5 Memory Management

Certain per packet data, such as the Initialization Vector (IV), may be copied depending
on whether it is 8-byte aligned or not. This will have an impact on performance. This
puts responsibility on the user of the API to be aware of the optimal data alignment for
the API they are using. Also the user needs to make sure that the data is available in
memory while the Security Services Unit is using it (that is until the callback is
invoked).

Figure 20. Flat Buffer Diagram

Buffer

LenInBytes

pData

Figure 21. Buffer List Diagram

Buffer 1

Buffers

pBuffers

UserData

pMetaData

LenInBytes0

pData0

LenInBytes1

pData1

User must also allocate this data

Security Software—Using the Intel® QuickAssist Technology Cryptographic API

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
PG August 2009
66 Order Number: 320183-004US

Note: For details on the most optimal usage of the Cryptographic API, refer to the API manual
for the specific interface in question.

The Cryptographic API takes two formats of buffer; CpaFlatBuffer and CpaBufferList.
These data types are discussed in sections 12.4.1 and 12.4.2 respectively. For buffer
lists it is assumed that each individual buffer in the list is entirely contiguous in
memory; that is, the Cryptographic API Library does not perform any scatter-gather
operations when forwarding data buffers to the Security Services Unit.

Note: It is not required that each buffer in the buffer list is contiguous in memory to the
other buffers in a buffer list.

All input and output data buffers will be allocated and freed by the client.

12.6 Endianness and Alignment

All packet data shall be in network byte order (big-endian format) and the Lookaside
Security module shall not be required to do endian swaps on the data. PKE buffers will
also be passed in big-endian format as per the relevant standards.

Note: There is no endianness associated with randomly generated data.

For optimal performance, data pointers should be 8-byte aligned. In some cases this is
a requirement, while in most other cases, it is a recommendation for performance.
Please refer to the API manual for optimal usage of the Cryptographic API.

12.7 High-Level API Flow

The following subsections describe the main usage scenarios for the Cryptographic API.

12.7.1 Cryptographic API Initialization and Shutdown

Note: The naming convention used for Initialization/Shutdown APIs is specific to the ASD
component rather than the Cryptographic API. These APIs are only called by the ASD
component to ensure correct initialization and shutdown procedures.

12.7.1.1 Initialization

On successful completion of this function, Cryptographic API is ready to be started. This
sequence of initialization/start/stop/shutdown is controlled by the ASD component to
ensure the overall system is correctly configured. The API will be invoked by ASD and is
defined as:

icp_AsdCfgLacInit()

12.7.1.2 Start

This API must be called before the Cryptographic API module will respond to any
cryptographic requests, this includes registration of sessions or performing operations.
The API will be invoked by ASD and is defined as:

icp_AsdCfgLacStart()

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
August 2009 PG
Order Number: 320183-004US 67

Using the Intel® QuickAssist Technology Cryptographic API—Security Software

12.7.1.3 Stop

Stop must be called prior to execution of the shutdown command. Once the
Cryptographic API module is shutdown, it will no longer respond to session creation of
perform operation requests. It will process all requests/responses still in flight. The API
is invoked by the ASD module:

icp_AsdCfgLacStop()

12.7.1.4 Shutdown

Shutdown is performed only in accordance with the following:

a. If there is an outstanding session, shutdown will be aborted.

b. If Stop has not been invoked and returned successfully, shutdown will be
aborted.

c. Otherwise shutdown will complete.

It is the responsibility of ASD to invoke the shutdown command on the Cryptographic
API module.

icp_AsdCfgLacShutdown()

12.8 Intel® QuickAssist Technology Cryptographic API Data
Flow

The following sections detail the basic steps involved in performing operations using the
Cryptographic API. Sample code and procedures are supplied for a subset of
operations, see [SAMPLE_CODE] for details.

12.8.1 Completion of an Operation

1. Asynchronous: A callback will be invoked upon completion of the operation

2. Synchronous: The operation perform function will return

Note: Freeing Memory: For Asychronous mode, user allocated memory may be freed once the
callback is called. For Sychronous mode, user allocated memory may be freed once the
Operation Perform API returns.

12.8.2 Symmetric Operations

A symmetric operation typically has the following cycle: session initialization, perform
one or more operations and session removal when finished.

12.8.2.1 Session Initialization

1. Define a symmetric callback function as per the API prototype, see the API manual.
If synchronous operation is preferred, instead simply pass NULL to the API for the
callback parameter.

2. Allocate memory for the session

a. Session setup data

b. Session context

— Call session context get size API to get the size

Security Software—Using the Intel® QuickAssist Technology Cryptographic API

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
PG August 2009
68 Order Number: 320183-004US

Note: The session context memory must be available to the API for the duration of the
session. Other session memory may be freed once the session is initialized.

3. Populate the symmetric session setup data structure

a. Session priority (normal or high)

b. Symmetric operation (Cipher, Hash, Auth-Cipher, chained)

c. Operation setup data structure (Cipher and/or Hash)

d. Algorithm chaining order

4. Populate the operation setup data structure

• Cipher and/or Hash

• Refer to the API manual for full parameter details

5. Populate the symmetric session setup structure

6. Call the symmetric session initialize API

Now the session is initialized it can be used to perform symmetric operations.

12.8.2.2 Session Removal

When the session is no longer required it may be removed by calling the session
removal API.

After the session has been removed the memory allocated for the session context may
be freed.

12.8.2.3 Cipher, Hash, Nested and Authentication (Full Packet)

Sample code is provided for Cipher and Hash operations, see [SAMPLE_CODE] and the
API manual. The basic steps involved in performing an operation are detailed below. A
symmetric operation requires a session for that operation type to be initialized before
performing an operation.

1. Initialize a session, see Section 12.8.2.1

2. Allocate memory for the source and destination buffer lists

• For an in-place operation only one buffer list needs to be allocated

3. Allocate memory for the symmetric operation data

Cipher Only:

• Allocate memory for the Initialization Vector (IV)

— 8-byte aligned for optimal performance

4. Populate the appropriate symmetric operation data structure, see the API manual

5. Call the symmetric operation perform API one or more times

6. Completion of operation, see Section 12.8.1

7. Remove session, see Section 12.8.2.2

12.8.2.4 Partial Packet Variation (Cipher, Hash, Authentication)

The following partial packet variation applies to the full packet sequences described for
Cipher, Hash and Authentication (Section 12.8.2.3). Partial packets may be used in a
situation where a large packet was segmented on the network.

Change the following steps from full packet requests:

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
August 2009 PG
Order Number: 320183-004US 69

Using the Intel® QuickAssist Technology Cryptographic API—Security Software

1. Populate the symmetric operation data structure

2. Call the symmetric operation perform API

With the following steps which are used for partial packets:

1. Populate the symmetric operation data structure and set packet type to partial

2. Call the symmetric operation perform API

3. Repeat steps 1 & 2 above for each partial packet which needs to be processed

4. For the final partial packet initialize the symmetric operation data structure and set
the packet type to last partial

5. Perform the operation

Note: Steps 1) and 2) may be repeated according to number of partial packets requiring
Cipher/Hash/Authentication.

Note: The size of the data to be Hashed or Ciphered must be a multiple of the block size of
the algorithm for all partial packets except the last partial.

Note: For Hash/Authentication the digest pointer and the digest verify flag are only used for
the last partial.

12.8.2.5 Algorithm Chaining and Authenticated-Encryption

Algorithm chaining involves performing a cipher followed by a hash or a hash followed
by a cipher in one operation. Authenticated-encryption involves performing a
authenticate followed by a cipher in one operation.

Sample code is provided for algorithm chaining operations; see [SAMPLE_CODE] and
the API manual. The basic steps involved in performing an operation are detailed
below.

1. Initialize a session, see Section 12.8.2.1

2. Allocate memory for the source and destination buffer lists

• For an in-place operation, only memory for the source buffer list needs to be
allocated

3. Allocate memory for the symmetric operation data

4. Populate the appropriate symmetric operation data structures, see the API manual

5. Call the symmetric operation perform API one or more times

6. Completion of operation, see Section 12.8.1

7. Remove session, see Section 12.8.2.2

12.8.2.6 SSL, TLS Key and MGF Mask Generation

Refer to the API manual for full details of Key and Mask Generation operations.

1. Define a Flat Buffer callback function as per the API prototype, see the API manual.
If synchronous operation is preferred, instead simply pass NULL to the API for the
callback parameter.

2. Allocate memory for the operation

3. Populate data for the appropriate operation data structure, see the API manual

• Fill in the Flat Buffers; pointer to data and length

• Fill in the options for the operation required

4. Call the appropriate Key or Mask Generation API

Security Software—Using the Intel® QuickAssist Technology Cryptographic API

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
PG August 2009
70 Order Number: 320183-004US

5. Completion of the operation, see Section 12.8.1

Note: The API for TLS key operations is based on the TLS 1.1 standard (RFC 4346). Backward
compatibility is supported with the legacy TLS 1.0 standard (RFC 2246). The user-
defined label should be used for backward compatibility with the client write key, server
write key, and iv block. See the Cryptographic API for details of populating
CpaCyKeyGenTlsOpData, the operation data structure. Below are some examples of the
parameter mapping to the Cryptographic API.

12.8.2.6.1 Setting CpaCyKeyGenTlsOpData Structure Fields

In RFC 4346, Section 6.3 ‘key_block’ is described as:

 key_block = PRF(SecurityParameters.master_secret,

 "key expansion",

 SecurityParameters.server_random +

 SecurityParameters.client_random);

This maps to the Cryptographic API's CpaCyKeyGenTlsOpData as follows:

 TLS Key-Material Derivation:

 tlsOp = CPA_CY_KEY_TLS_OP_KEY_MATERIAL_DERIVE

 secret = master secret key

 seed = server_random + client_random

 userLabel = NULL

12.8.2.6.2 Setting CpaCyKeyGenTlsOpData Structure Fields for backward compatibility

1. In RFC 2246, Section 6.3 ‘final_client_write_key’ is described as:

 final_client_write_key = PRF(client_write_key,

 "client write key",

 client_random +

 server_random)[0..15]

This maps to the Cryptographic API’s CpaCyKeyGenTlsOpData as follows:

 TLS User Defined Derivation:

 tlsOp = CPA_CY_KEY_TLS_OP_USER_DEFINED

 secret = client_write_key

 seed = client_random + server_random

 userLabel = "client write key"

2. In RFC 2246, Section 6.3 ‘final_server_write_key’ is described as:

 final_client_write_key = PRF(server_write_key,

 "server write key",

 client_random +

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
August 2009 PG
Order Number: 320183-004US 71

Using the Intel® QuickAssist Technology Cryptographic API—Security Software

 server_random)[0..15]

This maps to the Cryptographic API’s CpaCyKeyGenTlsOpData as follows:

 TLS User Defined Derivation:

 tlsOp = CPA_CY_KEY_TLS_OP_USER_DEFINED

 secret = server_write_key

 seed = client_random + server_random

 userLabel = "server write key"

3. In RFC 2246, Section 6.3 ‘iv_block’ is described as:

 iv_block = PRF("", "IV block", client_random +

 server_random)[0..15]

This maps to the Cryptographic API’s CpaCyKeyGenTlsOpData as follows:

 TLS User Defined Derivation:

 tlsOp = CPA_CY_KEY_TLS_OP_USER_DEFINED

 secret = NULL

 seed = client_random + server_random

 userLabel = "IV block"

Note: Memory for the user label must be physically contiguous memory allocated by the user.
This memory must be available to the API for the duration of the operation, see
Section 12.5 for details.

12.8.2.7 Generate Random Data

1. Define a random data callback function as per the API prototype, see the API
manual. If synchronous operation is preferred, instead simply pass NULL to the API
for the callback parameter.

2. Allocate memory for the operation

3. Populate data for the Random operation data structure, see the API manual

4. Call the Random data generation perform operation API

5. Completion of the operation, see Section 12.8.1

12.8.3 Asymmetric Operations

Asymmetric operations generally have the following cycle: allocate memory, populate
operation structure, perform operation and completion of the operation.

12.8.3.1 Test Prime Number

Sample code is provided for Prime-Test operation see [SAMPLE_CODE].

1. Define a Prime-Test callback function as per the API prototype, see the API manual
. If synchronous operation is preferred, instead simply pass NULL to the API for the
callback parameter.

2. Allocate memory for the operation

• Inputs: operation data structure

Security Software—Using the Intel® QuickAssist Technology Cryptographic API

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
PG August 2009
72 Order Number: 320183-004US

a. Prime Candidate

b. Perform GCD test

c. Perform Fermat test

d. Number of Miller-Rabin rounds

e. Perform Lucas test

• Output: Test Passed

3. Populate data for the Prime-Test operation data structure, see the API manual

• Fill in the Flat Buffers; pointer to data and length

4. Call the operation perform Prime Test API

5. Completion of the operation, see Section 12.8.1

12.8.3.2 Diffie-Hellman Phase 1 Key and Phase 2 Private Key Generation

Sample code is provided for Diffie-Hellman Phase operations, see [SAMPLE_CODE].

1. Define a Diffie-Hellman callback function as per the API prototype, see the API
manual . If synchronous operation is preferred, instead simply pass NULL to the
API for the callback parameter.

2. Allocate memory for the operation

3. Populate data for the appropriate Diffie-Hellman operation data structure, see the
API manual

• Fill in the Flat Buffers; pointer to data and length

4. Call the operation perform Phase 1 key generation API

5. Completion of the operation, see Section 12.8.1

12.8.3.3 DSA P, G, Y Parameter Generate

1. Define a DSA callback function as per DSA generic callback API prototype, see the
API manual. If synchronous operation is preferred, instead simply pass NULL to the
API for the callback parameter.

2. Allocate memory for the operation

3. Populate data for the appropriate operation data structure, see the API manual

• Fill in the Flat Buffers; pointer to data and length

4. Call the appropriate operation perform DSA API

5. Completion of the operation, see Section 12.8.1

12.8.3.4 DSA R, S, R & S Signature Generation

1. Define a DSA callback function as per DSA generic callback API prototype, see the
API manual. If synchronous operation is preferred, instead simply pass NULL to the
API for the callback parameter.

2. Allocate memory for the operation

3. Populate data for the appropriate operation data structure, see the API manual

• Fill in the Flat Buffers; pointer to data and length

4. Call the appropriate operation perform DSA API

5. Completion of the operation, see Section 12.8.1

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
August 2009 PG
Order Number: 320183-004US 73

Using the Intel® QuickAssist Technology Cryptographic API—Security Software

12.8.3.5 DSA Signature Verification

1. Define a DSA callback function as per DSA generic callback API prototype, see the
API manual. If synchronous operation is preferred, instead simply pass NULL to the
API for the callback parameter.

2. Allocate memory for the operation

3. Populate data for the appropriate operation data structure, see the API manual

• Fill in the Flat Buffers; pointer to data and length

4. Call the appropriate operation perform DSA API

5. Completion of the operation, see Section 12.8.1

12.8.3.6 RSA Key Generation Type 1 and Type 2

1. Define a RSA callback function as per the API prototype, see the API manual. If
synchronous operation is preferred, instead simply pass NULL to the API for the
callback parameter.

2. Allocate memory for the operation

3. Populate the RSA operation data structure, see the API manual

• Fill in the Flat Buffers; pointer to data and length

4. Call the operation perform RSA API

5. Completion of the operation, see Section 12.8.1

12.8.3.7 RSA Encryption and Signature Verification

1. Define a RSA callback function as per the API prototype, see the API manual. If
synchronous operation is preferred, instead simply pass NULL to the API for the
callback parameter.

2. Allocate memory for the operation

3. Populate the appropriate RSA operation data structure, see the API manual

• Fill in the Flat Buffers; pointer to data and length

4. Call the operation perform RSA API

5. Completion of the operation, see Section 12.8.1

12.8.3.8 RSA Decryption and Signature Generation

1. Define a RSA callback function as per the API prototype, see the API manual. If
synchronous operation is preferred, instead simply pass NULL to the API for the
callback parameter.

2. Allocate memory for the operation

3. Populate the appropriate RSA operation data structure, see the API manual

• Fill in the Flat Buffers; pointer to data and length

4. Call the operation perform RSA API

5. Completion of the operation, see Section 12.8.1

12.8.3.9 Large Number Operations - Modular Exponentiation & Inversion

1. Define a Large Number callback function as per the API prototype, see the API
manual. If synchronous operation is preferred, instead simply pass NULL to the API
for the callback parameter.

Security Software—Using the Intel® QuickAssist Technology Cryptographic API

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
PG August 2009
74 Order Number: 320183-004US

2. Allocate memory for the operation

3. Populate the appropriate Large Number operation data structure, see the API
manual

• Fill in the Flat Buffers; pointer to data and length

4. Call the Large Number operation perform API

5. Completion of the operation, see Section 12.8.1

12.9 Using a Cryptographic Framework

Note: The EP80579 security software release package version 1.0.3 does not support
OpenBSD/FreeBSD Cryptographic Framework (OCF), OCF-Linux, or any open source
projects such as Openswan*, OpenSSL*, or Racoon*. If your application requires OCF,
you must use security software package version 1.0.2 which includes shim software to
enable OCF support.

A number of cryptographic frameworks exist within the industry and/or the open source
community. These frameworks typically provide software implementations of various
cryptographic operations, and allow vendors of cryptographic accelerators to “plug in”
their hardware-based implementation underneath. One such cryptographic framework
is the OpenBSD/FreeBSD Cryptographic Framework (OCF). OCF is a service
virtualization layer that facilitates asynchronous access to cryptographic hardware
accelerators. OCF-Linux is a port of this framework to Linux.

A driver has been created which enables the Lookaside Cryptographic features to be
accessed via OCF. See the [GET_STARTED_GD] for your operating system for more
detailed information.

For customers who already program to the OCF API, this “shim” offers a simple way to
utilize the Cryptographic API without changing application code. Programming against a
portable API such as OCF protects your software investment, allowing your application
to run on any processor supported by OCF, while still taking advantage of the lookaside
cryptographic acceleration services when running on Intel® EP80579 Integrated
Processor or future silicon supporting the Intel® QuickAssist Technology.

Further information on OCF-Linux can be found here: http://ocf-linux.sourceforge.net

12.10 Accelerating Cryptographic Protocols

Note: The EP80579 security software release package version 1.0.3 does not support
OpenBSD/FreeBSD Cryptographic Framework (OCF), OCF-Linux, or any open source
projects such as Openswan*, OpenSSL*, or Racoon*. If your application requires OCF,
you must use security software package version 1.0.2 which includes shim software to
enable OCF support.

Cryptographic protocols, such as IPSec/IKE or SSL, can consume significant computing
cycles executing cryptographic operations such as:

• encryption/decryption to ensure confidentiality

• message digests for authentication

• modular exponentiation for key exchange via public key cryptography

These operations can be very compute-intensive, so accelerating these by off-loading
the processing from the main processor core, can allow higher throughput or free up
cycles for other, higher-value applications.

http://ocf-linux.sourceforge.net

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
August 2009 PG
Order Number: 320183-004US 75

Using the Intel® QuickAssist Technology Cryptographic API—Security Software

There are several open-source projects which implement these protocols. These include
Openswan* (which implements IPSec), OpenSSL* (which implements SSL/TLS), and
Racoon* (which implements IKE on FreeBSD). These in turn can be configured to use
OCF for their cryptographic operations. Using the OCF shim described in Section 12.9,
customers may be able to take advantage of cryptographic acceleration in the
Openswan and OpenSSL software suites.

12.11 Error Handling

In the case of an error occurring when an API function is invoked, the API function will
return with the error condition and no callback function will be called. Table 22 shows
the status values that are defined in cpa.h, along with their descriptions.

§ §

Table 22. Cryptographic API Status Values

Value Description

CPA_STATUS_SUCCESS Operation was successful

CPA_STATUS_FAIL General or unspecified error occurred

CPA_STATUS_RETRY Recoverable error occurred

CPA_STATUS_RESOURCE Required resource unavailable

CPA_STATUS_INVALID_PARAM Invalid parameter supplied

CPA_STATUS_FATAL Fatal error has occurred

Security Software—NPF Copyright Notice

Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
PG August 2009
76 Order Number: 320183-004US

Appendix A NPF Copyright Notice

The following copyright notice is included because some of the content in this manual
(specifically, Section 10.0, “Programming Model” on page 43) references the [NPF API].

Note that the Network Processor Forum (NPF) merged with the Optical Internetworking
Forum (OIF) in 2006.

§ §

Figure 22. NPF Copyright Notice

Copyright © 2003 The Network Processing Forum (NPF). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published and distributed, in whole or in
part, without restriction other than the following, (1) the above copyright notice and
this paragraph must be included on all such copies and derivative works, and (2) this
document itself may not be modified in any way, such as by removing the copyright
notice or references to the NPF, except as needed for the purpose of developing NPF
Implementation Agreements.

	Intel® EP80579 Software for Security Applications on Intel® QuickAssist Technology
	Contents
	Figures
	Tables

	Revision History
	1.0 Introduction
	1.1 What’s New in this Chapter
	1.2 About this Document
	1.3 Where to Find Current Software and Documentation
	1.4 Related Information
	1.4.1 Reference Documents

	1.5 Glossary
	1.6 Features Supported in this Release

	Part 1: Architectural Overview
	2.0 Silicon Overview
	2.1 What’s New in this Chapter
	2.2 High Level Overview

	3.0 Software Overview
	3.1 What’s New in this Chapter
	3.2 Shared Memory Allocation
	3.3 Logical View
	3.3.1 Acceleration Firmware Layer
	3.3.2 Acceleration Access Layer and Acceleration APIs
	3.3.3 Infrastructure
	3.3.4 Acceleration System Driver (ASD)
	3.3.5 Shim Layers

	3.4 Development View
	3.5 Process View
	3.6 Deployment View

	4.0 Intel® QuickAssist Technology Cryptographic API Architecture Overview
	4.1 What’s New in this Chapter
	4.2 Feature List
	4.2.1 Symmetric Operations
	4.2.1.1 Cipher
	4.2.1.2 Hash/Authentication
	4.2.1.3 Partial Packets for Cipher and Hash/Authentication Commands
	4.2.1.4 Out-Of-Place Operation Support
	4.2.1.5 Combined Cipher Hash Commands (Algorithm-Chaining)
	4.2.1.6 Authenticated-Encryption Commands
	4.2.1.7 Key Generation

	4.2.2 Random Number
	4.2.3 Public Key Operations
	4.2.3.1 Diffie-Hellman
	4.2.3.2 RSA
	4.2.3.3 DSA
	4.2.3.4 Prime Number
	4.2.3.5 Large Number

	4.3 Intel® QuickAssist Technology Cryptographic API Documentation
	4.4 Lookaside Security Algorithms High Level Overview
	4.4.1 Lookaside Symmetric Overview
	4.4.2 Key Generation
	4.4.3 Lookaside PKE Overview
	4.4.3.1 Diffie-Hellman Key Exchange
	4.4.3.2 RSA Cryptographic Standard
	4.4.3.3 Digital Signature Algorithm
	4.4.3.4 Prime Number Testing
	4.4.3.5 Large Number

	4.4.4 Lookaside Random Overview

	5.0 QAT Access Layer Architecture Overview
	5.1 What’s New in this Chapter
	5.2 Overview

	6.0 Debug Component Architecture Overview
	6.1 What’s New in this Chapter
	6.2 Overview
	6.3 Version Information
	6.4 Liveness Detection
	6.5 Data Structure Dump

	7.0 ASD Module Architecture Overview
	7.1 What’s New in this Chapter
	7.2 Overview
	7.3 Functional Description
	7.3.1 Configuration

	7.4 Boot Time Configuration Instructions

	8.0 ASD Hardware Services
	8.1 What’s New in this Chapter
	8.2 Overview
	8.3 Functional Description
	8.3.1 Interrupt Management Services
	8.3.2 NCDRAM/CDRAM Interface
	8.3.2.1 Development Board Environment

	Part 2: Using the API
	9.0 Introduction to Use Cases
	9.1 What’s New in this Chapter
	9.2 Use Cases
	9.2.1 Lookaside Acceleration Model

	10.0 Programming Model
	10.1 What’s New in this Chapter
	10.2 Overview
	10.3 Intel® QuickAssist Technology API Conventions
	10.3.1 Memory Allocation and Ownership
	10.3.2 Data Buffer Models
	10.3.2.1 Flat Buffers
	10.3.2.2 Scatter Gather Lists

	10.3.3 Synchronous and Asynchronous Support
	10.3.3.1 Asynchronous Operation
	10.3.3.2 Synchronous Operation

	10.3.4 Pre-Registration

	10.4 Other API Conventions
	10.4.1 Asynchronous API and Function Completion Callbacks
	10.4.2 Memory Allocation and Ownership
	10.4.3 Callback Data Structures
	10.4.4 Return Codes

	11.0 Debugging Applications
	11.1 What’s New in this Chapter
	11.2 Management Interface Layer (MIL) Introduction
	11.2.1 Loading the MIL Application

	11.3 MIL User Command Details
	11.3.1 help
	11.3.2 DebugEnable
	11.3.3 DebugDisable
	11.3.4 VersionDumpAll
	11.3.5 setHC <timeout>
	11.3.6 SystemHealthCheck
	11.3.7 DataDump
	11.3.8 SetFileName <filename>

	11.4 APIs

	12.0 Using the Intel® QuickAssist Technology Cryptographic API
	12.1 What’s New in this Chapter
	12.2 Intel® QuickAssist Technology Cryptographic API
	12.2.1 Modes of Operation
	12.2.1.1 Asynchronous Operation
	12.2.1.2 Synchronous Operation

	12.2.2 Interrupt Operation
	12.2.2.1 Interrupt Coalescing

	12.2.3 Engine and Priority Support
	12.2.4 Statistics

	12.3 Symmetric Cryptographic API Data Flow
	12.4 Data Format
	12.4.1 Flat Buffers
	12.4.2 Buffer List

	12.5 Memory Management
	12.6 Endianness and Alignment
	12.7 High-Level API Flow
	12.7.1 Cryptographic API Initialization and Shutdown
	12.7.1.1 Initialization
	12.7.1.2 Start
	12.7.1.3 Stop
	12.7.1.4 Shutdown

	12.8 Intel® QuickAssist Technology Cryptographic API Data Flow
	12.8.1 Completion of an Operation
	12.8.2 Symmetric Operations
	12.8.2.1 Session Initialization
	12.8.2.2 Session Removal
	12.8.2.3 Cipher, Hash, Nested and Authentication (Full Packet)
	12.8.2.4 Partial Packet Variation (Cipher, Hash, Authentication)
	12.8.2.5 Algorithm Chaining and Authenticated-Encryption
	12.8.2.6 SSL, TLS Key and MGF Mask Generation
	12.8.2.7 Generate Random Data

	12.8.3 Asymmetric Operations
	12.8.3.1 Test Prime Number
	12.8.3.2 Diffie-Hellman Phase 1 Key and Phase 2 Private Key Generation
	12.8.3.3 DSA P, G, Y Parameter Generate
	12.8.3.4 DSA R, S, R & S Signature Generation
	12.8.3.5 DSA Signature Verification
	12.8.3.6 RSA Key Generation Type 1 and Type 2
	12.8.3.7 RSA Encryption and Signature Verification
	12.8.3.8 RSA Decryption and Signature Generation
	12.8.3.9 Large Number Operations - Modular Exponentiation & Inversion

	12.9 Using a Cryptographic Framework
	12.10 Accelerating Cryptographic Protocols
	12.11 Error Handling

	Appendix A NPF Copyright Notice

